scholarly journals Approximation properties of (p;q)-variant of Stancu-Schurer operators

2018 ◽  
Vol 37 (4) ◽  
pp. 137-151 ◽  
Author(s):  
Abdul Wafi ◽  
Nadeem Rao ◽  
_ Deepmala

In this article, we have introduced (p;q)-variant of Stancu-Schurer operators and discussed the rate of convergence for continuous functions. We have also discussed recursive estimates, Korovkin-type theorems and direct approximation results using second order modulus of continuity, Peetre’s K-functional and Lipschitz class.

2018 ◽  
Vol 34 (3) ◽  
pp. 363-370
Author(s):  
M. MURSALEEN ◽  
◽  
MOHD. AHASAN ◽  

In this paper, a Dunkl type generalization of Stancu type q-Szasz-Mirakjan-Kantorovich positive linear operators ´ of the exponential function is introduced. With the help of well-known Korovkin’s theorem, some approximation properties and also the rate of convergence for these operators in terms of the classical and second-order modulus of continuity, Peetre’s K-functional and Lipschitz functions are investigated.


2021 ◽  
Vol 45 (02) ◽  
pp. 309-322
Author(s):  
NESIBE MANAV ◽  
NURHAYAT ISPIR

We introduce a genuine summation-integral type operators based on Lupaş-Jain type base functions related to the unbounded sequences. We investigated their degree of approximation in terms of modulus of continuity and ????-functional for the functions from bounded and continuous functions space. Furthermore, we give some theorems for the local approximation properties of functions belonging to Lipschitz class. Also, we give Voronovskaja theorem for these operators.


Filomat ◽  
2018 ◽  
Vol 32 (1) ◽  
pp. 217-229 ◽  
Author(s):  
K. Kanat ◽  
M. Sofyalıoğlu

In this paper, we introduce Lupa?-Schurer operators based on (p,q)-integers. Then, we deal with the approximation properties for (p,q)-Lupa?-Schurer operators based on Korovkin type approximation theorem. Moreover, we compute rate of convergence by using modulus of continuity, with the help of functions of Lipschitz class and Peetre?s K-functionals.


2007 ◽  
Vol 44 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Mehmet Özarslan

The main object of this paper is to define the q -Laguerre type positive linear operators and investigate the approximation properties of these operators. The rate of convegence of these operators are studied by using the modulus of continuity, Peetre’s K -functional and Lipschitz class functional. The estimation to the difference | Mn +1, q ( ƒ ; χ )− Mn , q ( ƒ ; χ )| is also obtained for the Meyer-König and Zeller operators based on the q -integers [2]. Finally, the r -th order generalization of the q -Laguerre type operators are defined and their approximation properties and the rate of convergence of this r -th order generalization are also examined.


2013 ◽  
Vol 21 (3) ◽  
pp. 209-222 ◽  
Author(s):  
Ali Olgun ◽  
H. Gül İnce ◽  
Fatma Tasdelen

Abstract In the present paper, we study a Kantorovich type generalization of Meyer-König and Zeller type operators via generating functions. Using Korovkin type theorem we first give approximation properties of these operators defined on the space C [0;A] ; 0 < A < 1. Secondly, we compute the rate of convergence of these operators by means of the modulus of continuity and the elements of the modified Lipschitz class. Finally, we give an r-th order generalization of these operators in the sense of Kirov and Popova and we obtain approximation properties of them.


Filomat ◽  
2016 ◽  
Vol 30 (5) ◽  
pp. 1151-1160
Author(s):  
Ogün Doğru ◽  
Gürhan İçoz ◽  
Kadir Kanat

We introduce a Stancu type generalization of the Lupa? operators based on the q-integers, rate of convergence of this modification are obtained by means of the modulus of continuity, Lipschitz class functions and Peetre?s K-functional. We will also introduce r-th order generalization of these operators and obtain its statistical approximation properties.


Filomat ◽  
2020 ◽  
Vol 34 (12) ◽  
pp. 4043-4060
Author(s):  
Km. Lipi ◽  
Naokant Deo

In this article, we deal with the approximation properties of Ismail-May operators [16] based on a non-negative real parameter ?. We provide some graphs and error estimation table for a numerical example depicting the convergence of our proposed operators. We further define the B?zier variant of these operators and give a direct approximation theorem using Ditizan-Totik modulus of smoothness and a Voronovoskaya type asymptotic theorem. We also study the error in approximation of functions having derivatives of bounded variation. Lastly, we introduce the bivariate generalization of Ismail May operators and estimate its rate of convergence for functions of Lipschitz class.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Heping Wang ◽  
Yanbo Zhang

We discuss the rate of convergence of the Lupasq-analogues of the Bernstein operatorsRn,q(f;x)which were given by Lupas in 1987. We obtain the estimates for the rate of convergence ofRn,q(f)by the modulus of continuity off, and show that the estimates are sharp in the sense of order for Lipschitz continuous functions.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wen-Tao Cheng ◽  
Qing-Bo Cai

In the present paper, the generalized p,q-gamma-type operators based on p,q-calculus are introduced. The moments and central moments are obtained, and some local approximation properties of these operators are investigated by means of modulus of continuity and Peetre K-functional. Also, the rate of convergence, weighted approximation, and pointwise estimates of these operators are studied. Finally, a Voronovskaja-type theorem is presented.


2018 ◽  
Vol 7 (1) ◽  
pp. 15-34 ◽  
Author(s):  
Hugo Beirão da Veiga

AbstractLet {\boldsymbol{L}} be a second order uniformly elliptic operator, and consider the equation {\boldsymbol{L}u=f} under the boundary condition {u=0}. We assume data f in generical subspaces of continuous functions {D_{\overline{\omega}}} characterized by a given modulus of continuity{\overline{\omega}(r)}, and show that the second order derivatives of the solution u belong to functional spaces {D_{\widehat{\omega}}}, characterized by a modulus of continuity{\widehat{\omega}(r)} expressed in terms of {\overline{\omega}(r)}. Results are optimal. In some cases, as for Hölder spaces, {D_{\widehat{\omega}}=D_{\overline{\omega}}}. In this case we say that full regularity occurs. In particular, full regularity occurs for the new class of functional spaces {C^{0,\lambda}_{\alpha}(\overline{\Omega})} which includes, as a particular case, the classical Hölder spaces {C^{0,\lambda}(\overline{\Omega})=C^{0,\lambda}_{0}(\overline{\Omega})}. Few words, concerning the possibility of generalizations and applications to non-linear problems, are expended at the end of the introduction and also in the last section.


Sign in / Sign up

Export Citation Format

Share Document