scholarly journals Using Auxiliary Information More Efficiently in Population Variance Estimation - A New Family of Estimators

2020 ◽  
Vol 2 (2) ◽  
pp. 1-12
Author(s):  
Kalim Ullah ◽  
Zawar Hussain ◽  
Salman Arif Cheema

In this article, we have suggested estimation of variance in finite population by using known values of parameter related to auxiliary information such as rank and second raw moment of auxiliary variable in stratified random sampling. The expression for the bias and mean squared error (MSE) of the suggested estimator are obtained up to first order of approximation. The proposed estimator is efficient comparatively various other estimators. A numerical and theoretical study are performed to support the suggested estimator.

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246947
Author(s):  
Sohail Ahmad ◽  
Muhammad Arslan ◽  
Aamna Khan ◽  
Javid Shabbir

In this paper, we propose a generalized class of exponential type estimators for estimating the finite population mean using two auxiliary attributes under simple random sampling and stratified random sampling. The bias and mean squared error (MSE) of the proposed class of estimators are derived up to first order of approximation. Both empirical study and theoretical comparisons are discussed. Four populations are used to support the theoretical findings. It is observed that the proposed class of estimators perform better as compared to all other considered estimator in simple and stratified random sampling.


2021 ◽  
Vol 21 (1) ◽  
pp. 163-170
Author(s):  
MUHAMMAD IJAZ ◽  
ATTA ULLAH ◽  
TOLGA ZAMAN

The paper produces some new modified forms of the ratio estimators using the auxiliary information. The large sample properties, that is, the bias and mean squared error up to the first order of approximation are determined. The comparison is made with other existing estimators by using an applied data. It has been observed that the proposed estimators have a fewer mean squared error and leads to the efficient results as compared to the classical ratio estimator, Sisodia and Dwivedi, Singh and Kakran, Upadhyaya and Singh estimators.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Muhammad Irfan ◽  
Maria Javed ◽  
Sandile C. Shongwe ◽  
Muhammad Zohaib ◽  
Sajjad Haider Bhatti

In this paper, a generalized class of estimators for the estimation of population median are proposed under simple random sampling without replacement (SRSWOR) through robust measures of the auxiliary variable. Three robust measures, decile mean, Hodges–Lehmann estimator, and trimean of an auxiliary variable, are used. Mathematical properties of the proposed estimators such as bias, mean squared error (MSE), and minimum MSE are derived up to first order of approximation. We considered various real-life datasets and a simulation study to check the potentiality of the proposed estimators over the competitors. Robustness is also examined through a real dataset. Based on the fascinating results, the researchers are encouraged to use the proposed estimators for population median under SRSWOR.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Nelson Kiprono Bii ◽  
Christopher Ouma Onyango ◽  
John Odhiambo

Nonresponse is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random nonresponse using auxiliary data. In this study, it is assumed that random nonresponse occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random nonresponse. In particular, auxiliary information is used via an improved Nadaraya–Watson kernel regression technique to compensate for random nonresponse. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of a finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at 95% coverage rate. The results obtained in this study are useful for instance in choosing efficient estimators of a finite population mean in demographic sample surveys.


2017 ◽  
Vol 1 ◽  
pp. 83-91
Author(s):  
S.K. Yadav ◽  
Sheela Misra ◽  
S.S. Mishra ◽  
Shankar Prasad Khanal

Background: Whenever the population is large and it is very time taking and costly to take observation on each unit of the population then sampling is the only way to get the appropriate estimate of the population parameter under consideration. Many authors have given many estimators for estimating population variance with greater efficiency.Objective: The objective of the study is to search for more efficient estimator than the competing estimators of population variance of study variable.Materials and Methods: The estimator utilizing information on tri-mean and inter quartile range of auxiliary variable has been is developed. The expressions for the bias and mean squared error (MSE) of the proposed estimator have been derived up to the first order of approximation. A theoretical comparison of the proposed estimator has been made with the competing estimators of population variance.Results: The theoretical findings have been justified with the help of numerical example from some natural populations. It has been found that the proposed estimator is best among the competing estimators of population variance as it has least mean squared error among them.Conclusion: Since the proposed estimator is best among the competing estimator of the population variance, therefore it must be used for the improved estimation of population variance.Nepalese Journal of Statistics, 2017, Vol. 1, 83-91


2017 ◽  
Vol 13 (2) ◽  
pp. 77-108
Author(s):  
H. P. Singh ◽  
A. Yadav

Abstract In this paper we have suggested a family of estimators of the population mean using auxiliary information in sample surveys. The bias and mean squared error of the proposed class of estimators have been obtained under large sample approximation. We have derived the conditions for the parameters under which the proposed class of estimators has smaller mean squared error than the sample mean, ratio, product, regression estimator and the two parameter ratio-product-ratio estimators envisaged by Chami et al (2012). An empirical study is carried out to demonstrate the performance of the proposed class of estimators over other existing estimators.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 329
Author(s):  
Mahdi O. Karkush ◽  
Mahmood D. Ahmed ◽  
Ammar Abdul-Hassan Sheikha ◽  
Ayad Al-Rumaithi

The current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production of thematic maps showing the variation of the bearing capacity of the soil over the whole area of Al-Basrah city correlated with several depths. The bearing capacity of soil obtained from the suggested first-order polynomial matches well with those calculated from the results of SPTs with a deviation of ±30% at a 95% confidence interval.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Saddam Hussain ◽  
Mi Zichuan ◽  
Sardar Hussain ◽  
Anum Iftikhar ◽  
Muhammad Asif ◽  
...  

In this paper, we proposed two new families of estimators using the supplementary information on the auxiliary variable and exponential function for the population distribution functions in case of nonresponse under simple random sampling. The estimations are done in two nonresponse scenarios. These are nonresponse on study variable and nonresponse on both study and auxiliary variables. As we have highlighted above that two new families of estimators are proposed, in the first family, the mean was used, while in the second family, ranks were used as auxiliary variables. Expression of biases and mean squared error of the proposed and existing estimators are obtained up to the first order of approximation. The performances of the proposed and existing estimators are compared theoretically. On these theoretical comparisons, we demonstrate that the proposed families of estimators are better in performance than the existing estimators available in the literature, under the obtained conditions. Furthermore, these theoretical findings are braced numerically by an empirical study offering the proposed relative efficiencies of the proposed families of estimators.


1983 ◽  
Vol 32 (1-2) ◽  
pp. 47-56 ◽  
Author(s):  
S. K. Srivastava ◽  
H. S. Jhajj

For estimating the mean of a finite population, Srivastava and Jhajj (1981) defined a broad class of estimators which we information of the sample mean as well as the sample variance of an auxiliary variable. In this paper we extend this class of estimators to the case when such information on p(> 1) auxiliary variables is available. The estimators of the class involve unknown constants whose optimum values depend on unknown population parameters. When these population parameters are replaced by their consistent estimates, the resulting estimators are shown to have the same asymptotic mean squared error. An expression by which the mean squared error of such estimators is smaller than those which use only the population means of the auxiliary variables, is obtained.


2020 ◽  
Vol 8 (2) ◽  
pp. 49-56
Author(s):  
Akan Anieting

In this article, a new estimator for population mean in two-phase stratified sampling in the presence of nonresponse using single auxiliary variable has been proposed. The bias and Mean Squared Error (MSE) of the proposed estimator has been given using large sample approximation. The empirical study shows that the MSE of the proposed estimator is more efficient than existing estimators. The optimum values of first and second phase sample have been determined.


Sign in / Sign up

Export Citation Format

Share Document