scholarly journals Thematic Maps for the Variation of Bearing Capacity of Soil Using SPTs and MATLAB

Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 329
Author(s):  
Mahdi O. Karkush ◽  
Mahmood D. Ahmed ◽  
Ammar Abdul-Hassan Sheikha ◽  
Ayad Al-Rumaithi

The current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production of thematic maps showing the variation of the bearing capacity of the soil over the whole area of Al-Basrah city correlated with several depths. The bearing capacity of soil obtained from the suggested first-order polynomial matches well with those calculated from the results of SPTs with a deviation of ±30% at a 95% confidence interval.

1987 ◽  
Vol 3 (3) ◽  
pp. 359-370 ◽  
Author(s):  
Koichi Maekawa

We compare the distributional properties of the four predictors commonly used in practice. They are based on the maximum likelihood, two types of the least squared, and the Yule-Walker estimators. The asymptotic expansions of the distribution, bias, and mean-squared error for the four predictors are derived up to O(T−1), where T is the sample size. Examining the formulas of the asymptotic expansions, we find that except for the Yule-Walker type predictor, the other three predictors have the same distributional properties up to O(T−1).


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246947
Author(s):  
Sohail Ahmad ◽  
Muhammad Arslan ◽  
Aamna Khan ◽  
Javid Shabbir

In this paper, we propose a generalized class of exponential type estimators for estimating the finite population mean using two auxiliary attributes under simple random sampling and stratified random sampling. The bias and mean squared error (MSE) of the proposed class of estimators are derived up to first order of approximation. Both empirical study and theoretical comparisons are discussed. Four populations are used to support the theoretical findings. It is observed that the proposed class of estimators perform better as compared to all other considered estimator in simple and stratified random sampling.


2019 ◽  
Vol 11 (12) ◽  
pp. 1459 ◽  
Author(s):  
Linjing Zhang ◽  
Zhenfeng Shao ◽  
Jianchen Liu ◽  
Qimin Cheng

Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy policies to sustainable forest management. However, passive optical remote sensing, which is the most widely used remote sensing data for retrieving vegetation parameters, is constrained by spectral saturation problems and cloud cover. On the other hand, LiDAR data, which have been extensively used to estimate forest structure attributes, cannot provide sufficient spectral information of vegetation canopies. Thus, this study aimed to develop a novel synergistic approach to estimating biomass by integrating LiDAR data with Landsat 8 imagery through a deep learning-based workflow. First the relationships between biomass and spectral vegetation indices (SVIs) and LiDAR metrics were separately investigated. Next, two groups of combined optical and LiDAR indices (i.e., COLI1 and COLI2) were designed and explored to identify their performances in biomass estimation. Finally, five prediction models, including K-nearest Neighbor, Random Forest, Support Vector Regression, the deep learning model, i.e., Stacked Sparse Autoencoder network (SSAE), and multiple stepwise linear regressions, were individually used to estimate biomass with input variables of different scenarios, i.e., (i) all the COLI1 (ACOLI1), (ii) all the COLI2 (ACOLI2), (iii) ACOLI1 and all the optical (AO) and LiDAR variables (AL), and (iv) ACOLI2, AO and AL. Results showed that univariate models with the combined optical and LiDAR indices as explanatory variables presented better modeling performance than those with either optical or LiDAR data alone, regardless of the combination mode. The SSAE model obtained the best performance compared to the other tested prediction algorithms for the forest biomass estimation. The best predictive accuracy was achieved by the SSAE model with inputs of combined optical and LiDAR variables (i.e., ACOLI1, AO and AL) that yielded an R2 of 0.935, root mean squared error (RMSE) of 15.67 Mg/ha, and relative root mean squared error (RMSEr) of 11.407%. It was concluded that the presented combined indices were simple and effective by integrating LiDAR-derived structure information with Landsat 8 spectral data for estimating forest biomass. Overall, the SSAE model with inputs of Landsat 8 and LiDAR integrated information resulted in accurate estimation of forest biomass. The presented modeling workflow will greatly facilitate future forest biomass estimation and carbon stock assessments.


1995 ◽  
Vol 60 (2) ◽  
pp. 315-324 ◽  
Author(s):  
J. Estany ◽  
D. Sorensen

AbstractVariance components for litter size (total number of piglets born) were estimated from Danish purebred Landrace and Yorkshire litters by restricting maximum likelihood. The data were collected from the national Danish breeding programme and consisted of 19 666 litters in Danish Landrace and 29 336 litters in Danish Yorkshire. Four different analyses for litter size were conducted within breed. In the first two, genetic groups were included in the model in order to account for the importation of animals from other countries; in the other two, genetic groups were removed from the model. Within each case, herd-year-type of insemination effects were fitted as fixed (H-fixed models), or herd-year-season-type of insemination effects were fitted as random (H-random models). Estimates of heritability ranged from about 0·11 to 0·14 in Landrace and from 0·10 to 0·11 in Yorkshire. Variance due to herd-year-season-type of insemination ranged from 0·029 to 0·041 of total variance, values somewhat lower than those obtained for non-genetic permanent effects. In order to compare the four models, data were divided into different subsets, and records from one subset were predicted using parameters estimated from the other subset. Both the correlation between observed and predicted values, and the mean squared error of prediction indicated that predictive ability was higher in the case of H-random models. There was no evidence that genetic groups improved the predictive ability for litter size. However, group effects affected inferences about genetic trend, particularly in Landrace, where genetic group composition changed consistently over the years.


2009 ◽  
Vol 2009 ◽  
pp. 1-2
Author(s):  
Deepak Batra ◽  
Sanjay Sharma ◽  
Amit Kumar Kohli

This correspondence presents a linear transformation, which is used to estimate correlation coefficient of first-order Markov process. It outperforms zero-forcing (ZF), minimum mean-squared error (MMSE), and whitened least-squares (WTLSs) estimators by controlling output noise variance at the cost of increased computational complexity.


2021 ◽  
Vol 21 (1) ◽  
pp. 163-170
Author(s):  
MUHAMMAD IJAZ ◽  
ATTA ULLAH ◽  
TOLGA ZAMAN

The paper produces some new modified forms of the ratio estimators using the auxiliary information. The large sample properties, that is, the bias and mean squared error up to the first order of approximation are determined. The comparison is made with other existing estimators by using an applied data. It has been observed that the proposed estimators have a fewer mean squared error and leads to the efficient results as compared to the classical ratio estimator, Sisodia and Dwivedi, Singh and Kakran, Upadhyaya and Singh estimators.


2020 ◽  
Vol 2 (2) ◽  
pp. 1-12
Author(s):  
Kalim Ullah ◽  
Zawar Hussain ◽  
Salman Arif Cheema

In this article, we have suggested estimation of variance in finite population by using known values of parameter related to auxiliary information such as rank and second raw moment of auxiliary variable in stratified random sampling. The expression for the bias and mean squared error (MSE) of the suggested estimator are obtained up to first order of approximation. The proposed estimator is efficient comparatively various other estimators. A numerical and theoretical study are performed to support the suggested estimator.


2018 ◽  
Vol 3 (1) ◽  
pp. 24-32
Author(s):  
Muhammad Ali ◽  
Muhammad Khalil ◽  
Muhammad Hanif ◽  
Nasir Jamal ◽  
Usman Shahzad

In this research study, modified family of estimators is proposed to estimate the population variance of the study variable when the population variance, quartiles, median and the coefficient of correlation of auxiliary variable are known. The expression of bias and mean squared error (MSE) of the proposed estimator are derived. Comparisons of the proposed estimator with the other existing are conducted estimators. The results obtained were illustrated numerically by using primary data sets. Theoretical and numerical justification of the proposed estimator was done to show its dominance.


2000 ◽  
Vol 30 (2) ◽  
pp. 333-347 ◽  
Author(s):  
Thomas Mack

AbstractA claims reserving method is reviewed which was introduced by Gunnar Benktander in 1976. It is a very intuitive credibility mixture of Bornhuetter/Ferguson and Chain Ladder. In this paper, the mean squared errors of all 3 methods are calculated and compared on the basis of a very simple stochastic model. The Benktander method is found to have almost always a smaller mean squared error than the other two methods and to be almost as precise as an exact Bayesian procedure.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Wenxin Wu ◽  
Haibo Zou ◽  
Jiusheng Shan ◽  
Shanshan Wu

Using echo-top height and hourly rainfall datasets, a new reflectivity-rainfall (Z-R) relationship is established in the present study for the radar-based quantitative precipitation estimation (RQPE), taking into account both the temporal evolution (dynamical) and the types of echoes (i.e., based on echo-top height classification). The new Z-R relationship is then applied to derive the RQPE over the middle and lower reaches of Yangtze River for two short-time intense rainfall cases in summer (2200 UTC 1 June 2016 and 2200 UTC 18 June 2016) and one stratiform rainfall case in winter (0000 UTC 15 December 2017), and then the comparative analyses between the RQPE and the RQPEs derived by the other two methods (the fixed Z-R relationship and the dynamical Z-R relationship based on radar reflectivity classification) are accomplished. The results show that the RQPE from the new Z-R relationship is much closer to the observation than those from the other two methods because the new method simultaneously considers the echo intensity (reflecting the size and concentration of hydrometers to a certain extent) and the echo-top height (reflecting the updraft to a certain extent). Two statistics of 720 rainfall events in summer (April to June 2017) and 50 rainfall events in winter (December 2017) over the same region show that the correlation coefficient (root-mean-squared error and relative error) between RQPE derived by the new Z-R relationship and observation is significantly increased (decreased) compared to the other two Z-R relationships. Besides, the new Z-R relationship is also good at estimating rainfall with different intensities as compared to the other two methods, especially for the intense rainfall.


Sign in / Sign up

Export Citation Format

Share Document