Naringenin attenuates cerebral Ischemia-Reperfusion injury through Inhibiting oxidative stress and Inflammation in Diabetic Rats

Author(s):  
Orsu Prabhakar

Aim: Ischemic stroke is one of the important complications of diabetes. Diabetes exacerbate cerebral injury after ischemia and reperfusion. This study was designed to investigate whether the naringenin has a cerebroprotective action against the ischemic reperfusion injury via anti-oxidant and anti-inflammatory mechanisms in diabetic rats. Diabetes was induced by Streptozocine (50mg/kg) intraperitoneal injection at once. Medial carotid artery occlusion (30 min) and reperfusion (3 hr) was employed to induce cerebral infarction in diabetic rats. The animals were divided in to groups as: normal, sham, ischemia-reperfusion and naringenin treated (50, 100, 150 and 200mg/kg). These were used for evaluation of percentage of cerebral infarction. Further, 200mg/kg dose was selected for the estimation of inflammatory biomarkers such as Tumor necrosis factor-α, Interlukin-6, Interlukin-10 and oxidative stress biomarkers such as malondialdehyde, superoxide dismutase, and catalase were estimated and histopathological changes were studied. Dose dependent reduction in percentage of cerebral infarction was observed in narigenin treated groups. With Naringenin 200mg/kg dose, inflammatory and oxidative stress markers like Tumor necrosis factor-α, Interlukin-6, myeloperoxidase and malondialdehyde levels were distinctively reduced and there was a remarkable increased levels of anti-inflammatory and anti-oxidant markers like Interlukin-10, catalase, and superoxide dismutase. Conclusion: Collectively, these findings demonstrate that the mechanism (s) responsible for a cerebroprotective effect of naringenin against the ischemic reperfusion injury in the diabetic rats involves anti-oxidant and anti-inflammatory actions.

2015 ◽  
Vol 60 (11) ◽  
pp. 3252-3263 ◽  
Author(s):  
Aline Cristine da Silva de Souza ◽  
Stephanie Carvalho Borges ◽  
Evandro José Beraldi ◽  
Anacharis Babeto de Sá-Nakanishi ◽  
Jurandir Fernando Comar ◽  
...  

2019 ◽  
Vol 35 (1) ◽  
Author(s):  
Ju-Bin Kang ◽  
Dong-Ju Park ◽  
Murad-Ali Shah ◽  
Myeong-Ok Kim ◽  
Phil-Ok Koh

Abstract Lipopolysaccharide (LPS) acts as an endotoxin, releases inflammatory cytokines, and promotes an inflammatory response in various tissues. This study investigated whether LPS modulates neuroglia activation and nuclear factor kappa B (NF-κB)-mediated inflammatory factors in the cerebral cortex. Adult male mice were divided into control animals and LPS-treated animals. The mice received LPS (250 μg/kg) or vehicle via an intraperitoneal injection for 5 days. We confirmed a reduction of body weight in LPS-treated animals and observed severe histopathological changes in the cerebral cortex. Moreover, we elucidated increases of reactive oxygen species and oxidative stress levels in LPS-treated animals. LPS administration led to increases of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Iba-1 and GFAP are well accepted as markers of activated microglia and astrocytes, respectively. Moreover, LPS exposure induced increases of NF-κB and pro-inflammatory factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Increases of these inflammatory mediators by LPS exposure indicate that LPS leads to inflammatory responses and tissue damage. These results demonstrated that LPS activates neuroglial cells and increases NF-κB-mediated inflammatory factors in the cerebral cortex. Thus, these findings suggest that LPS induces neurotoxicity by increasing oxidative stress and activating neuroglia and inflammatory factors in the cerebral cortex.


Sign in / Sign up

Export Citation Format

Share Document