Method Development and Validation of Spectrophotometric Methods for The Estimation of Rizatriptan Benzoate in Pure and Pharmaceutical Dosage Form

Author(s):  
Pushpa Latha E. ◽  
Sailaja B.

Analytical UV derivative spectrophotometric method was developed and validated to quantify Rizatriptan Benzoate in pure drug and tablet dosage form. Based on the spectrophotometric characteristics of Rizatriptan Benzoate, a signal of zero (225nm), first (216nm), second (237nm), third (233nm), fourth (231nm) order derivative spectra were found to be adequate for quantification. The methods obeyed Beer's law in the concentration range of (0.1-360µg/ml) with square correlation coefficient (r2) of 0.999. The mean percentage recovery was found to be 100.01 ± 0.075. As per ICH guidelines the results of the analysis were validated in terms of linearity, precision, accuracy, limit of detection and limit of quantification, and were found to be satisfactory.

INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (11) ◽  
pp. 30-35
Author(s):  
P. K Kottu ◽  
◽  
A.P. Gadad ◽  
P. M Dandagi

Objective: The objective of the present work was to design a simple, accurate, economical and reproducible UV spectrophotometric method for the simultaneous estimation of a two-component drug mixture of pioglitazone and glimepiride in the combined tablet dosage form. Methodology: Simultaneous estimation method that involves maximum absorbance (λ max) of Pioglitazone and Glimepiride at 279.0 nm and 238.0 nm, respectively was developed. The proposed method was validated as per ICH guidelines for accuracy, precision, linearity, limit of quantification (LOQ) and limit of detection (LOD). The calibration curves were linear in the concentration range for pioglitazone (r value) and for glimepiride (r value) and were found to obey Beers law in the linear concentration ranges. Statistical analysis and drug recovery data showed that simultaneous estimation method was simple, rapid, economical, sensitive,precise and reproducible. Hence, the proposed method was recommended for routine analysis of pioglitazone and glimepiride in combined tablet dosage form.


Author(s):  
Anas Rasheed ◽  
Osman Ahmed

A specific, precise, accurate ultra pressure liquid chromatography (UPLC) method is developed for estimation of chlophedianol hydrochloride in bulk drug and syrup dosage form. The method employed with Hypersil BDS C18 (100 mm x 2.1 mm, 1.7 μm) in a gradient mode, with mobile phase of methanol and acetonitrile in the ratio of 65:35 %v/v. The flow rate was 0.1 ml/min and effluent was monitored at 254 nm. Retention time was found to be 1.130±0.005 min. The method was validated in terms of linearity, accuracy, precision, limit of detection (LOD), limit of quantification (LOQ)in accordance with ICH guidelines. Linear regression analysis data for the calibration plot showed that there was good linear relationship between response and concentration in the range of 20-100 μg/ml respectively. The LOD and LOQ values were found to be 2.094(μg/ml)and 6.3466(μg/ml)respectively. No chromatographic interference from syrup excipients and degradants were found. The proposed method was successfully used for estimation of chlophedianol hydrochloride in syrup dosage form.


2013 ◽  
Vol 19 (3) ◽  
pp. 333-337 ◽  
Author(s):  
A.C. Arvadiya ◽  
P.P. Dahivelker

A simple, precise, accurate, sensitive and repeatable RP-UPLC method was developed for quantitative determination of atropine sulphate in pharmaceutical dosage form. The method was developed by using C18 column Hiber HR Purospher Star (100mm?2.1mm id, 2?m particle size) as stationary phase with Phosphate Buffer: Acetonitrile (87:13, %v/v) as a mobile phase, pH was adjusted to 3.5 by ortho-phosphoric acid at a flow rate of 0.5 mL/min and column temperature maintained at 30?C. Quantification of eluted compound was achieved with PDA detector at 210 nm. Atropine sulphate followed linearity in concentration range of 2.5-17.5 ?g/mL with r2=0.9998 (n=6). Limit of detection (LOD) and limit of quantification (LOQ) values were 0.0033 and 0.0102 ?g/mL for atropine sulphate. The validation study is carried out as per International Conference on Harmonization (ICH) guidelines. This method was successfully applied for estimation of atropine sulphate in pharmaceutical formulation.


Author(s):  
Khushbu K. Patel ◽  
Arati M. Patel ◽  
C. N. Patel

A new simple, rapid, accurate and precise method for estimation of Bilastine in pharmaceutical dosage form by reverse phase liquid chromatography. The developed method employed mobile phase was Acetonitrile and Ammonium acetate pH 5.0 adjusted with glacial acetic acid with 85:15% v/v and flow rate 1.0ml/min. Method was developed using column C18 Water (150 × 4.6mm, 5µm) and detection wavelength was 215nm. The retention time was found to be 2.519 min. the proposed method was successfully applied to the determination of Bilastine in dosage form. High linearity of developed method was confirmed over concentration range of 25- 150 µg/ml and co-relation co-efficient is 0.996. The percentage RSD for precision and accuracy of the method was found to be less than 2%. The recovery was in the range of 99 – 102% and limit of detection was found to be 0.45µg/ml and limit of quantification was found to be 1.20µg/ml. Bilastine was found to degrade under acid and oxidation conditions. There was no interference of excipient and degradation product in retention time so method was specific. Analytical parameter such as precision, accuracy, limit of detection, limit of quantification and robustness were determined according to international Conference on Harmonization (ICH) guidelines.


Author(s):  
Sayyed Nazifa Sabir Ali ◽  
Lajporiya Mobina ◽  
Manjra Mehfuza ◽  
Patel Seema ◽  
Aejaz Ahmed ◽  
...  

Aims: To develop and validate a new, simple, rapid, precise, and accurate An Eco-friendly RP-HPLC and UV-Method Development and Validation for an estimation of Favipiravir in Bulk and pharmaceutical dosage form followed by Forced Degradation Studies. Study Design: This was employed for UV-visible (200-400 nm and 400-800 nm respectively) and RP-HPLC method development using C 18 inertsil column and optimization of variables for Favipiravir estimation in bulk and formulations. Place and Duration of the Study: The present work was carried out at Ali-allana College of Pharmacy, Akkalkuwa between the duration of November-2020 to February-2021. Methodology: UV-Spectroscopic method was developed for the estimation of Favipiravir in the bulk and pharmaceutical dosage form. The solvent selected for the Favipiravir UV analysis was water, the solution in a range of 2-10µg/ml was scanned in the UV region from 200-400 nm and the λmax value was determined. The RP-HPLC method was developed on inertsil ODS-3V C18 150 mm x 4.6mm x 5μ column using buffer pH 3.5: acetonitrile [90:10] as mobile phase at flow rate 1.0 ml/min and PDA detection at 358 nm. Results: The maximum absorbance was observed at 358 nm. The wavelength 358 nm was selected for further analysis of Favipiravir. The calibration curve was determined using drug concentrations ranging from 2-10 µg/ml. The % recovery for accuracy was 100.50-100.76%. The method was to be precise with a % RSD value 0.51-1.37 and 0.77-1.78 for intraday and Interday respectively. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 0.0723 &0.219 µg/ml respectively by UV method. The RP-HPLC method was shown to be linear in the 50-250 μg/ml concentration range. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 2.186 & 6.626 μg/ml respectively. The method was to be precise with a % RSD value 0.25-1.53 and 0.86-1.68 for intraday and inter-day respectively. Conclusion: Here we conclude that the developed UV and RP-HPLC methods are precise, accurate, sensitive, and reproducible for the quantitative estimation of Favipiravir bulk and its formulation. The developed method can be used by the pharmaceutical industries for the routine analysis of Favipiravir, in particular by UV and RP-HPLC. The main features of the proposed method are economic and eco-friendly with less retention time around 5.0 min.


Author(s):  
Sneha Singh ◽  
Mohit Saini ◽  
Jitender K. Malik ◽  
Amit Kumar

Silymarin is extracted from the Silybum marianum (milk thistle) plant C25 containing flavonoid mixture. It is mainly used for its effect in liver disease. The HPLC of silymarin tablet had been validated for precision, accuracy (recovery), selectivity & Linearity. In the present study, an attempt was made to provide a newer, simple, sensitive, precise and low cost HPLC method for the effective quantitative determination of silymarin as an active pharmaceutical ingredient as well as in pharmaceutical preparations without the interferences of other constituent in the formulations. HPLC method is developed and validated for various parameters as per ICH guidelines. The validated method was effectively useful to the commercially accessible pharmaceutical dosage form, yielding extremely good and reproducible result.


Author(s):  
Sheetal Bastia ◽  
Vaibhav Gawade ◽  
Vitthal Chopade ◽  
Rahul Jagtap ◽  
Vishal Modi

Mifepristone structurally belongs to the class of anti-progesterone steroids, which are used as an oral contraceptive. The reverse phase HPLC method was designed in a simplified and rapid way for the estimation of Mifepristone in bulk as well as tablets. The method was established using a Kromasil C18 column of dimensions of 250mm×4.6mm and a particle size of 5m.The used mobile phase was Acetonitrile: Water (70:30, v/v). The pump was pumped at 1 ml/min at a temperature of about 30 ± 2 °C and the eluted analyte was identified at 305 nm. Mifepristone eluted with a mean retention time of 6.27 minutes. The intended method was validated as per ICH (International Council for Harmonisation) guidelines, indicating a high degree of specificity, system suitability, accuracy, precision, and robustness. The LOD (Limit of detection) was found to be 0.7238 ppm and the limit of measurement was 0.9562 ppm. The method linearity was found to be between 1-6µg/ml, with an R2 of 0.9923. In accuracy studies, the percent recovery was found to be between 99.39% - 100.50%. The method was discovered to be precise as the values of the percent RSD were found to be less than 2.0% for both intraday and interday. The method was discovered to be reliable and robust. Mifepristone in marketed pharmaceutical tablet dosage form was effectively quantified using the established Reverse Phase HPLC method.


2021 ◽  
Vol 12 (3) ◽  
pp. 2291-2296
Author(s):  
Bhavani N. L. D. ◽  
Gowtham Reddy Cheruku ◽  
Bhargava Sri Harsha Polina ◽  
Dheeraj Kotagiri ◽  
Jnanendra Kumar Korukollu

The work was proposed to discuss method development and validation of the drug Mesalamine by using hydrotropic solubilizing agents. An uncomplicated, accurate, and precise method was developed for the drug Mesalamine in bulk as well as Pharmaceutical dosage form. 5M Urea was used as the hydrotropic solubilizing agent to enhance the solubility of the drug. The maximum wavelength (ʎ max) for Mesalamine was found to be 241nm. The validation was performed as per International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines for Accuracy, linearity, precision, Limit of detection (LOD) and Limit of quantification (LOQ). Percentage recovery (%) of Mesalamine was ascertained to be between 95 to 98%. Linearity for Mesalamine was observed between 2-10 µg/ml. Regression equation y=0.0571x-0.0186, regression coefficient (r²) is 0.9996 for Mesalamine. Inter day and intraday precision were checked, % relative standard deviation values were less than 2 for both the methods. Limit of detection (LOD) and Limit of quantification (LOQ) values were derived using regression equations. LOD value was found to be 0.55 µg/ml. LOQ value was found to be 1.67 µg/ml. The assay of the marketed formulation was performed and the results of the assay were obtained by the proposed method. The results are in between 98-102%. So, the method developed was simple and economical that can be adopted for routine tests.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (09) ◽  
pp. 73-75
Author(s):  
China Babu D ◽  
Madhusudhana Chetty C ◽  
Mastanamma S. K ◽  

A new analytical method was developed for the estimation of apalutamide in bulk and its pharmaceutical formulation. The sensitive, précise and accurate method was developed by using Waters Acquity UPLC system equipped with quaternary gradient pump. The column used was Waters C18 150 X 2.1 mm X 1.7 µm and mobile phase was 0.2 % OPA buffer in water : acetonitrile in the ratio of 25:75 V/V. The buffer pH was maintained at 4.5. The fl ow rate of mobile phase was 0.5 mL min-1 and detection was at 272 nm by using PDA detector. The method was performed at ambient temperature. The retention time of the apalutamide was 1.27 min. The % RSD value in precision was >2 %. The accuracy of the method was found to be between 99.54 % - 100.01 %. The limit of detection and limit of quantifi cation values were found to be 0.14 µg mL-1 and 0.48 µg mL-1, respectively. The linearity concentration range was found to be 11.25 - 67.5 µg mL-1, it show wide linearity concentration range. The method was proved to have good robustness after changing parameters of fl ow rate, temperature and mobile phase composition. The method showed good ability towards different stress conditions of acidity, alkalinity, peroxide and UV-light. The method can be used for the routine analysis of apalutamide in bulk and its pharmaceutical dosage form by using UPLC.


Author(s):  
G.M. Kadam ◽  
A.L. Puyad ◽  
T.M. Kalyankar

A new, economical, simple, accurate, and precise RP-HPLC method was developed for simultaneous assay and content uniformity determination of Sacubitril and Valsartan in bulk and pharmaceutical dosage form. The separation of Sacubitril and Valsartan was achieved within 6 minutes on Phenomenex Luna C18 250 mm x 4.6mm and 5µm Particle Size, column using Acetonitrile: Methanol: Water (30:55:15% v/v/v) as the mobile phase. Detection was carried out at 250 nm wavelength. The retention time of Sacubitril and Valsartan was found to be 2.361 and 3.304 min, respectively. The validation of the developed method was performed in terms of specificity, accuracy, precision, linearity, the limit of detection, the limit of quantification as mentioned in International Conference on Harmonization (ICH) guidelines. The method showed adequate sensitivity concerning linearity, accuracy, and precision over the range 12-36 μg/ml and 13-39 μg/ml for Sacubitril and Valsartan, respectively. The percentage recoveries obtained for Sacubitril and Valsartan were found to be in the range of 98.00 – 102.00 %. The proposed method is suitable for use in quality-control laboratories for quantitative analysis.


Sign in / Sign up

Export Citation Format

Share Document