Integrated pest management approaches for the control of Erysiphe polygoni, causal agent of powdery mildew on sugar beets in Idaho

Author(s):  
Oliver T. Neher ◽  
Tamara Keeth
2018 ◽  
Vol 71 ◽  
pp. 112-120 ◽  
Author(s):  
Abie Horrocks ◽  
Paul A. Horne ◽  
Melanie M. Davidson

An integrated pest management (IPM) strategy was compared with farmers’ conventional pest management practices on twelve spring- and autumn-sown seed and forage brassica crops. Demonstration trials were conducted in Canterbury from spring 2015 to autumn 2017 by splitting farmers’ paddocks in half and applying the two management approaches side by side. A farmer participatory approach was used, with management decisions based on monitoring pests and biological-control agents. Farmer and adviser training with a focus on monitoring and identification was carried out. Biological-control agents capable of contributing to pest control were identified in all brassica crops. There was a 35% reduction in the number of insecticides applied under IPM compared with conventional management, negligible crop yield differences, and the type of insecticides applied was different. IPM adoption at these farms was high by the end of the 3-year project with 11 of the 12 farmers implementing IPM across 90—100% of their brassica crops. This project was a starting point for an industry-wide change of practice to IPM, which has become more widespread since its completion.


Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1362-1362
Author(s):  
B. Jacobsen ◽  
M. R. Johnston ◽  
H. C. Weltzien

Wide spread powdery mildew infections on sugar beets were observed at the Southern Agricultural Experiment Station in Huntley, MT during September, 2003. Throughout the area, lower leaves were frequently heavily covered by the vegetative stage of the fungus with plants at the edge of the field having clearly visible abundant mature (black) and immature (brown) globose ascocarps on the leaf surfaces and stems. The fruiting structures had mostly branched appendages and were imbedded in the superficial mycelium. Their diameter ranged from 70 to 100 μm. Each ascocarp contained five to eight asci with one to four ascospores (mostly three) per ascus. Elliptical ascospores were hyaline and measured 20 to 25 μm long and 12 to 20 μm wide. On the basis of the descriptions given for isolates from Idaho and Colorado (1) and the usage of Erysiphe polygoni DC for powdery mildew on sugar beet in the United States, this isolate may be classified as E. polygoni DC. However, measurements taken show that ascocarps, asci, and ascospores also fall within the range of E. betae (Vanha) Weltz. as described by Weltzien (2). We strongly suggest that these species be compared by using rDNA analysis of the ITS region to determine whether they are separate species. If survival of the ascocarps and the viability and pathogenicity of the ascospores can be confirmed, epidemics of sugar beet powdery mildew could be understood as local and regional events that are not dependant on long distance dispersal of conidiospores. The occurrence of the perfect stage also could lead to the more frequent appearance of new races through genetic recombination. References: (1) J. J Gallian and L. E. Hanson. Plant Dis. 87:200, 2003. (2) H. C. Weltzien. Phytopathol. Z. 47:123, 1963.


1996 ◽  
Vol 14 (1) ◽  
pp. 46-49 ◽  
Author(s):  
James D. DeVault ◽  
Keith J. Hughes ◽  
Odell A. Johnson ◽  
Sudhir K. Narang

2012 ◽  
Vol 151 (5) ◽  
pp. 648-658 ◽  
Author(s):  
M. FERNÁNDEZ-GONZÁLEZ ◽  
F. J. RODRÍGUEZ-RAJO ◽  
O. ESCUREDO ◽  
M. J. AIRA

SUMMARYPowdery mildew is one of the most important vineyard diseases. Infection requires the interaction of a susceptible host (a vine in a phenological phase susceptible to the pathogen), a virulent pathogen (the fungus Uncinula necator (Schw.) Burr) and an environment favourable for disease development (optimal meteorological conditions). The aim of the present study was the implementation of a system to predict powdery mildew infection periods in order to optimize and reduce the application of pesticide treatments in a vineyard. The study was conducted in a vineyard of the ‘Ribeiro’ Designation of Origin region located in north-western Spain from 2006 to 2011, during the Vitis vegetative period. The phenological study was conducted following the BBCH phenological scale and infection risk index (IRI) was calculated based on the maximum temperature. Aerobiological sampling was performed using a LANZONI VPPS-2000 volumetric trap. The results of the study show that the critical phenological stages for powdery mildew infection are 5 (inflorescence emergence), 6 (flowering) and 7 (development of fruit), as consequence of the high susceptibility of the vine. The IRI allows determination of the periods in which the meteorological conditions could facilitate fungal attacks during the aforementioned phenological phases. Finally, the aerobiological model helps to identify and predict the times of real infection risk among the possible periods described by the IRI with high accuracy, in order to avoid possible reappearance of infection symptoms in the vine. The combination of these three variables provides a valuable tool to establish an accurate, modern, integrated pest-management strategy in a vineyard.


Sign in / Sign up

Export Citation Format

Share Document