Sensitivity of Aphanomyces cochlioides from Sugar Beet to selected Fungicides

2021 ◽  
Vol 58 (1 & 2) ◽  
pp. 40-50
Author(s):  
Sahar Arabiat ◽  
Yangxi Liu ◽  
Mohamed F. R. Khan
Author(s):  

Abstract A new distribution map is provided for Aphanomyces cochlioides Drechsler. Peronosporea: Saprolegniales: Leptolegniaceae. Hosts: spinach (Spinacia oleracea), sugar beet (Beta vulgaris), and other members of the Chenopodiaceae and Amaranthaceae. Information is given on the geographical distribution in Africa (Egypt), Asia (Japan, Hokkaido, Turkey), Europe (Austria, Belgium, Bulgaria, Croatia, Denmark, Estonia, France, Germany, Hungary, Ireland, Moldova, Netherlands, Poland, Russia, Spain, Sweden, Ukraine, UK), North America (Canada, Alberta, Nova Scotia, Ontario, Quebec, USA, Arizona, California, Connecticut, Idaho, Indiana, Iowa, Maine, Michigan, Minnesota, Montana, Nebraska, North Dakota, Ohio, South Dakota, Texas, Washington, Wisconsin, Wyoming), Oceania (Australia, Queensland), and South America (Chile).


Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 547-551 ◽  
Author(s):  
Julie W. Beale ◽  
Carol E. Windels ◽  
Linda L. Kinkel

Spatial distribution of Aphanomyces cochlioides inoculum and disease was assessed in sugar beet fields located near Moorhead, MN and Wahpeton, ND. Soil samples were collected in June and July 1994 from two main plots (60 by 60 m) in each field. Samples were evaluated for A. cochlioides using a sugar beet seedling assay in the greenhouse to determine a root rot index value (0-to-100 scale), which served as an indirect estimate of relative activity and density of inoculum. Field evaluations of Aphanomyces root rot on sugar beet (0-to-7 scale) were made at harvest in September at each soil collection site. Greenhouse root rot index values correlated positively with field disease ratings for all plots. Variance-to-mean ratios of greenhouse root rot index values and of field disease ratings among samples within each plot were calculated to compare the spatial distribution of midseason inoculum with root rot at harvest. Ratios of greenhouse root rot indices indicated that inoculum of A. cochlioides was aggregated in the field at midseason, but root rot was uniform within plots by harvest. Wet weather in July through August was conducive to infection and development of symptoms. A uniform distribution of disease at harvest likely reflects a combination of factors, including root growth into inoculum foci, redistribution of inoculum, and inoculum densities that are spatially variable but all above some minimum threshold for infection.


1966 ◽  
Vol 14 (2) ◽  
pp. 164-167 ◽  
Author(s):  
Gerald E. Coe ◽  
C. L. Schneider

2000 ◽  
Vol 1 (1) ◽  
pp. 8 ◽  
Author(s):  
Carol E. Windels

This diagositc guide is on Aphanomyces Root Rot on Sugar Beet, by Aphanomyces cochlioides Drechs. Accepted for publication 18 July 2000. Published 20 July 2000.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1349-1354 ◽  
Author(s):  
A. M. Stinson ◽  
N. K. Zidack ◽  
G. A. Strobel ◽  
B. J. Jacobsen

Mycofumigation is the use of antimicrobial volatiles produced by fungi such as Muscodor albusitalic and M. roseus for the control of other organisms. Sugar beet (Beta vulgaris L.) stand establishment was increased and disease severity decreased by mycofumigation with M. roseus and M. albus in autoclaved soil infested with Rhizoctonia solani, Pythium ultimum, or Aphanomyces cochlioides. Eggplant seedlings (Solanum melongena L.) transplanted into autoclaved soil infested with Verticillium dahliae and mycofumigated with M. albus and M. roseus had significantly less disease (P < 0.05) after 4 and 5 weeks compared with nonmycofumigated Verticillium-infested soil. The effect of formulation on efficacy of mycofumigation with M. roseus was tested using potato dextrose agar strips, alginate capsules, ground barley, pesta granules, and stabileze granules. The stabileze and ground barley formulations of M. roseus resulted in the best control of P. ultimum damping-off. The best control of A. cochlioides damping-off was with the stabileze formulation, and the stabileze, ground barley, and agar strip formulations provided similar control of R. solani damping-off. In soil infested with P. ultimum, mycofumigation with M. albus stabileze formulation resulted in stand establishment similar to that in the autoclaved soil. Mycofumigation was ineffective in controlling Fusarium wilt of sugar beet. Neither M. albus nor M. roseus affected sugar beet or eggplant growth or appearance except in the stabileze formulation, where stunting was noticed. Mycofumigation with M. albus and M. roseus shows promise for control of soilborne diseases caused by P. ultimum, A. cochlioides, R. solani, and V. dahliae.


2011 ◽  
Vol 52 (No, 7) ◽  
pp. 314-320
Author(s):  
S. Kristek ◽  
A. Kristek ◽  
V. Guberac ◽  
A. Stanisavljević

Effect of sugar beet seed inoculation with a bacterium Pseudomonas fluorescens and treatment by fungicides Thiram&nbsp;42-S and Dithane S-60 with and without seed inoculation aiming to control Aphanomyces cochlioides &ndash; root decay agent was studied. The trial lasted for three years on two soil types (Mollic Gleysols and Eutric Cambisols). The following parameters of sugar beet yield and quality were investigated: root yield, sugar content, sugar in molasses, sugar yield as well as percentage of the infected and decayed plants as a consequence of parasite fungus infestation. The highest average sugar beet root yield was obtained in the variant of the seed treated with fungicide Thiram 42-S and inoculated with bacterium P. fluorescens (85.15 t/ha). However, there were no statistically significant differences (P &lt; 0.05) between the above-mentioned variant and the one with seed inoculated only with bacterium P. fluorescens (84.63 t/ha). The highest mean sugar content of 16.39% was also accomplished during the three-year investigation in the variant of the inoculated seed treated by fungicide Thiram 42-S. All other variants accomplished statistically very significantly lower values of this parameter. The same variant was characterized by the highest mean sugar yield value (12.79 t/ha) on both soil types. Namely, an average sugar yield of the variants inoculated with bacteria was 11.22 t/ha and by 44.22% higher compared to an average yield of non-inoculated variants. The highest percent of the infected and decayed plants (average value on both soil types in the three year investigation) was reported in the control variant (28.92% infected and 25.00% decayed plants) whereas the lowest one was detected in the variant of the seed inoculated with bacterium P. fluorescens in combination with low dose of fungicide Thiram 42-S (4.70% infected plants and 2.88% decayed plants). An average percent of the infected plants inoculated with bacterium P.&nbsp;fluorescens was 9.13% whereas the aforesaid value of the plants infected with parasitic fungus A. cochlioides in non-inoculated variants was by 146.00% higher being 22.42%.


2005 ◽  
Vol 71 (7) ◽  
pp. 3786-3796 ◽  
Author(s):  
Md. Tofazzal Islam ◽  
Yasuyuki Hashidoko ◽  
Abhinandan Deora ◽  
Toshiaki Ito ◽  
Satoshi Tahara

ABSTRACT We previously demonstrated that xanthobaccin A from the rhizoplane bacterium Lysobacter sp. strain SB-K88 suppresses damping-off disease caused by Pythium sp. in sugar beet. In this study we focused on modes of Lysobacter sp. strain SB-K88 root colonization and antibiosis of the bacterium against Aphanomyces cochlioides, a pathogen of damping-off disease. Scanning electron microscopic analysis of 2-week-old sugar beet seedlings from seeds previously inoculated with SB-K88 revealed dense colonization on the root surfaces and a characteristic perpendicular pattern of Lysobacter colonization possibly generated via development of polar, brush-like fimbriae. In colonized regions a semitransparent film apparently enveloping the root and microcolonies were observed on the root surface. This Lysobacter strain also efficiently colonized the roots of several plants, including spinach, tomato, Arabidopsis thaliana, and Amaranthus gangeticus. Plants grown from both sugar beet and spinach seeds that were previously treated with Lysobacter sp. strain SB-K88 displayed significant resistance to the damping-off disease triggered by A. cochlioides. Interestingly, zoospores of A. cochlioides became immotile within 1 min after exposure to a SB-K88 cell suspension, a cell-free supernatant of SB-K88, or pure xanthobaccin A (MIC, 0.01 μg/ml). In all cases, lysis followed within 30 min in the presence of the inhibiting factor(s). Our data indicate that Lysobacter sp. strain SB-K88 has a direct inhibitory effect on A. cochlioides, suppressing damping-off disease. Furthermore, this inhibitory effect of Lysobacter sp. strain SB-K88 is likely due to a combination of antibiosis and characteristic biofilm formation at the rhizoplane of the host plant.


Sign in / Sign up

Export Citation Format

Share Document