antimicrobial volatiles
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Alexander Lammers ◽  
Michael Lalk ◽  
Paolina Garbeva

We are currently facing an antimicrobial resistance crisis, which means that a lot of bacterial pathogens have developed resistance to common antibiotics. Hence, novel and innovative solutions are urgently needed to combat resistant human pathogens. A new source of antimicrobial compounds could be bacterial volatiles. Volatiles are ubiquitous produced, chemically divers and playing essential roles in intra- and interspecies interactions like communication and antimicrobial defense. In the last years, an increasing number of studies showed bioactivities of bacterial volatiles, including antibacterial, antifungal and anti-oomycete activities, indicating bacterial volatiles as an exciting source for novel antimicrobial compounds. In this review we introduce the chemical diversity of bacterial volatiles, their antimicrobial activities and methods for testing this activity. Concluding, we discuss the possibility of using antimicrobial volatiles to antagonize the antimicrobial resistance crisis.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Caihua Shi ◽  
Apratim Jash ◽  
Loong-Tak Lim

AbstractHexanal and salicylaldehyde are naturally-occurring antimicrobial volatiles from edible plants known for their efficacy for post-harvest preservation of fruits and vegetables. Due to their volatility and susceptibility to oxidation, these volatiles must be encapsulated within a carrier to control their release, especially when applied in modified atmnosphere and active packaging applications. In this study, salicylaldehyde precursor (SP; 1,3-dibenzylethane-2-hydroxyphenyl imidazolidine) and hexanal precursor (HP) were synthetized through a Schiff base reaction between these aldehydes and N,N’-dibenzylethane-1,2-diamine. The structure of SP was confirmed using nuclear magnetic resonance and attenuated total reflection-Fourier transform infrared (FTIR) spectroscopies. SP and HP, separately and in combinations, were encapsulated within ethylcellulose–poly(ethylene oxide) (EC–PEO) nonwoven membranes, using a free-surface electrospinning technique. Scanning electron microscopy showed that the morphology of the fibers varied substantially with SP and HP ratio. Specific interactions between SP and HP with the polymers were not detected from the FTIR spectroscopy analysis, suggesting that the precursors were mainly physically entrapped within the EC–PEO fiber matrix. Headspace gas chromatography showed that the release of hexanal and salicylaldehyde could be activated by contacting the precursor-containing electrospun nonwoven with an acidified agarose gel containing 0.003–0.3 M of citric acid. The delivery system can be promising for controlled release of hexanal and salicylaldehyde to extend the shelf-life of fruits and vegetables.


Phytotaxa ◽  
2018 ◽  
Vol 333 (2) ◽  
pp. 188 ◽  
Author(s):  
ANDRÉ A. M. GOMES ◽  
DANILO B. PINHO ◽  
ZENILDA DE L. CARDEAL ◽  
HELVÉCIO C. MENEZES ◽  
MARISA V. DE QUEIROZ ◽  
...  

During a bioprospecting of fungi producing antimicrobial volatile organic compounds, two Verticillium-like isolates from coffee branches were obtained by a parallel growth technique using Muscodor albus CZ 620. Micro-morphological characteristics and phylogenetic analyses showed that both isolates belonged to Simplicillium and represented a new species, namely S. coffeanum. In the test for antimicrobial activity, the mixture of volatiles emitted by S. coffeanum COAD 2057 inhibited the growth of Aspergillus ochraceus, A. tubingensis, A. sydowii and A. niger on PDA. Among the compounds of volatile mixture, 1-Propanone, 1-(5-methyl-2-furanyl)-, Cyclopropane, 1-ethoxy-2, 2-dimethyl-3-(2-phenylethynyl)-, and 2-Propenoic acid, 3-(2-formyl-4-methoxyphenyl)-, ethyl ester, (E)- possessed the highest percentage of peak per area. Therefore, S. coffeanum has potentially biocontrol ability through the emission of antimicrobial volatiles.


2016 ◽  
Vol 92 ◽  
pp. 66-76 ◽  
Author(s):  
Vibhuti Munjal ◽  
Agisha Valiya Nadakkakath ◽  
Neelam Sheoran ◽  
Aditi Kundu ◽  
Vibina Venugopal ◽  
...  

2007 ◽  
Vol 132 (6) ◽  
pp. 859-868 ◽  
Author(s):  
James J. Polashock ◽  
Robert A. Saftner ◽  
Matthew Kramer

Fruit of highbush blueberry (Vaccinium corymbosum L.) produce antimicrobial volatiles, including trans-2-hexenal, that may confer resistance to anthracnose fruit rot, an important postharvest disease caused by Colletotrichum acutatum J.H. Simmonds. To investigate whether aromatic volatiles in highbush blueberry fruit are associated with postharvest fruit rot resistance, we compared volatiles emitted from whole fruit and extracts from fruit kept in air at 20 °C for 0 to 6 days postharvest from cultivars having a wide range of resistance to anthracnose. Antimicrobial volatiles detected included the aldehydes, trans-2-hexenal and hexanal; the monoterpenes, limonene, linalool, 8-hydroxylinalool, α-terpineol, and terpinyl acetate; and the sesquiterpenes, cadinene, caryophyllene, and α-farnesene. There were significant correlations between some detected volatiles and these differed in whole fruit and extracts. Hexanal (in fruit extracts), trans-2-hexenal, terpinyl acetate, and cadinene emissions increased in most cultivars when fruit were kept in air at 20 °C for various times postharvest. Volatile emissions from whole fruit and extracts varied widely among the cultivars with early ripening cultivars generally showing higher volatile emissions than later ripening cultivars. Although the cultivars tested differed in quantities, and in some cases, the types of volatiles produced, these differences were not related to pedigree (i.e., species composition) nor to known anthracnose resistance ratings. Except for the confounded emissions of terpinyl acetate and cadinene, more than 80% of the variation observed for each volatile was attributable to the cultivar (genetic), year (environmental), and cultivar–by-year interaction. The results suggest that, although antimicrobial aldehydes and terpenes emitted from fully ripe highbush blueberry fruit and extracts might be important flavor and aroma components, they do not significantly contribute to disease resistance against anthracnose fruit rot.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1349-1354 ◽  
Author(s):  
A. M. Stinson ◽  
N. K. Zidack ◽  
G. A. Strobel ◽  
B. J. Jacobsen

Mycofumigation is the use of antimicrobial volatiles produced by fungi such as Muscodor albusitalic and M. roseus for the control of other organisms. Sugar beet (Beta vulgaris L.) stand establishment was increased and disease severity decreased by mycofumigation with M. roseus and M. albus in autoclaved soil infested with Rhizoctonia solani, Pythium ultimum, or Aphanomyces cochlioides. Eggplant seedlings (Solanum melongena L.) transplanted into autoclaved soil infested with Verticillium dahliae and mycofumigated with M. albus and M. roseus had significantly less disease (P < 0.05) after 4 and 5 weeks compared with nonmycofumigated Verticillium-infested soil. The effect of formulation on efficacy of mycofumigation with M. roseus was tested using potato dextrose agar strips, alginate capsules, ground barley, pesta granules, and stabileze granules. The stabileze and ground barley formulations of M. roseus resulted in the best control of P. ultimum damping-off. The best control of A. cochlioides damping-off was with the stabileze formulation, and the stabileze, ground barley, and agar strip formulations provided similar control of R. solani damping-off. In soil infested with P. ultimum, mycofumigation with M. albus stabileze formulation resulted in stand establishment similar to that in the autoclaved soil. Mycofumigation was ineffective in controlling Fusarium wilt of sugar beet. Neither M. albus nor M. roseus affected sugar beet or eggplant growth or appearance except in the stabileze formulation, where stunting was noticed. Mycofumigation with M. albus and M. roseus shows promise for control of soilborne diseases caused by P. ultimum, A. cochlioides, R. solani, and V. dahliae.


Sign in / Sign up

Export Citation Format

Share Document