scholarly journals Mycofumigation with Muscodor albus and Muscodor roseus for Control of Seedling Diseases of Sugar Beet and Verticillium Wilt of Eggplant

Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1349-1354 ◽  
Author(s):  
A. M. Stinson ◽  
N. K. Zidack ◽  
G. A. Strobel ◽  
B. J. Jacobsen

Mycofumigation is the use of antimicrobial volatiles produced by fungi such as Muscodor albusitalic and M. roseus for the control of other organisms. Sugar beet (Beta vulgaris L.) stand establishment was increased and disease severity decreased by mycofumigation with M. roseus and M. albus in autoclaved soil infested with Rhizoctonia solani, Pythium ultimum, or Aphanomyces cochlioides. Eggplant seedlings (Solanum melongena L.) transplanted into autoclaved soil infested with Verticillium dahliae and mycofumigated with M. albus and M. roseus had significantly less disease (P < 0.05) after 4 and 5 weeks compared with nonmycofumigated Verticillium-infested soil. The effect of formulation on efficacy of mycofumigation with M. roseus was tested using potato dextrose agar strips, alginate capsules, ground barley, pesta granules, and stabileze granules. The stabileze and ground barley formulations of M. roseus resulted in the best control of P. ultimum damping-off. The best control of A. cochlioides damping-off was with the stabileze formulation, and the stabileze, ground barley, and agar strip formulations provided similar control of R. solani damping-off. In soil infested with P. ultimum, mycofumigation with M. albus stabileze formulation resulted in stand establishment similar to that in the autoclaved soil. Mycofumigation was ineffective in controlling Fusarium wilt of sugar beet. Neither M. albus nor M. roseus affected sugar beet or eggplant growth or appearance except in the stabileze formulation, where stunting was noticed. Mycofumigation with M. albus and M. roseus shows promise for control of soilborne diseases caused by P. ultimum, A. cochlioides, R. solani, and V. dahliae.

1983 ◽  
Vol 29 (3) ◽  
pp. 321-324 ◽  
Author(s):  
Charles R. Howell ◽  
Robert D. Stipanovic

A compound with antibiotic activity toward Pythium ultimum was isolated from potato dextrose broth shake cultures of Gliocladium virens, a common soil mycoparasite known to inhibit but not parasitize P. ultimum. The mass spectrum and an X-ray crystallograph of the purified antibiotic indicated that it was a new diketopiperazine, and we have given it the trivial name gliovirin. Gliovirin is highly toxic to P. ultimum but is inactive against other fungi associated with cotton seedling disease. The antibiotic does not persist in nonsterile soil where it is apparently inactivated by the soil microflora.An ultraviolet light induced mutant of G. virens deficient for gliovirin production was overgrown by P. ultimum in culture and did not protect cotton seedlings from damping-off in P. ultimum infested soil. A mutant with enhanced gliovirin production was more inhibitory to P. ultimum in culture than the parent isolate and showed similar efficacy as a seedling disease suppressant, even though its growth rate was reduced when compared to the parent isolate. These results indicate that gliovirin may be important to the antagonist–pathogen interaction.


Plant Disease ◽  
1998 ◽  
Vol 82 (8) ◽  
pp. 896-899 ◽  
Author(s):  
J. R. Brantner ◽  
Carol E. Windels

Pythium ultimum var. sporangiiferum (76 isolates) and P. aphanidermatum (21 isolates) cultured from diseased sugar beet seedlings in Minnesota and North Dakota were tested for sensitivity to metalaxyl, pathogenicity on sugar beet, and disease control by metalaxyl seed treatment. Sensitivity to metalaxyl (effective concentration causing 50% growth inhibition [EC50]) was determined by linear growth on corn meal agar amended with 0, 0.01, 0.1, 1, 10, and 100 μg a.i. metalaxyl ml-1 after 48 h in the dark at 21 ± 1°C. Variation among isolates was significant (P = 0.05) within and between species, and EC50 values averaged 0.16 (range: 0.05 to 1.30 μg ml-1) for P. ultimum var. sporangiiferum and 2.06 (range: 1.19 to 3.12 μg ml-1) for P. aphanidermatum. In pathogenicity tests on sugar beet, most isolates of P. ultimum var. sporangiiferum (72 of 76) and all of P. aphanidermatum significantly (P = 0.05) decreased final stands compared to the noninoculated control. There was no correlation between aggressiveness in the absence of metalaxyl and in vitro sensitivity to metalaxyl. When Pythium-infested soil was planted with seed treated with metalaxyl at the standard (0.625 g a.i. kg-1) or half rate, some isolates that were least sensitive to metalaxyl in vitro resulted in a significant (P = 0.05) reduction in disease control. These results may explain, at least in part, why producers do not attain expected stands when they plant metalaxyl-treated sugar beet seed.


1988 ◽  
Vol 34 (5) ◽  
pp. 631-637 ◽  
Author(s):  
D. Walther ◽  
D. Gindrat

Seed treatment with ascospores of Chaetomium globosum reduced damping-off of sugar-beet caused by seed-borne Phoma betae and soil-borne Pythium ultimum or Rhizoctonia solani in growth chamber experiments. Seed treatment with a fluorescent Pseudomonas sp. controlled Ph. betae and P. ultimum but not R. solani. Coating cotton seeds with ascospores controlled P. ultimum and R. solani damping-off. In some experiments, biological seed treatments were equally or more effective than seed treatment with captan. However, greater variability in disease control occurred with the antagonists than with captan. Fifty percent of freshly harvested ascospores of C. globosum germinated in 8 h on water agar. When ascospores were stored under air-dried conditions for 3 days to 2.5 years, germination increased to > 90%. Under same storage conditions, survival of Pseudomonas sp. was detected after 4 months. Antagonistic activities observed in vitro were hyphal coiling of C. globosum on R. solani, and mycostasis was induced by C. globosum or Pseudomonas sp. on agar and soil. The presumed cause of mycostasis is the diffusible antifungal metabolites which may also be involved in the biological control of damping-off.


Plant Disease ◽  
2020 ◽  
Author(s):  
Mohamed Fizal Khan ◽  
Md. Ehsanul Haque ◽  
Peter Hakk ◽  
Md. Ziaur Rahman Bhuyian ◽  
Yangxi Liu ◽  
...  

Sugar beet (Beta vulgaris L.) is a globally important crop for sugar. In May 2019, sugar beet seedlings were observed with wilting, lodging and a few were dead in Glendive (46.970170, -104.838204), Montana. Symptoms appeared near the soil line as the stem (hypocotyl) turned dark brown to black with characteristic thread-like infections which resembled Pythium damping-off. It affected approximately 10% of the growing seedlings. Diseased sugar beet root tissues were excised with a sterile scalpel and small pieces (10 mm²) were surface sterilized with 70 % ethanol for 30 seconds, rinsed twice with autoclaved water, air-dried and transferred to potato dextrose agar (PDA) media amended with pimaricin-vancomycin-PCNB (Conway, 1985). Four plates were incubated at 25° C in the dark (Masago et al., 1977) and two weeks later white, dense colony was observed (Zhang et al., 2018). The terminal smooth, globose oogonia (average 18.5 µm in diameter) and antheridia (average 14.5 × 9.5 µm) extended below the oogonium were observed via VWR N. A. 0.30 microscope. The morphological features of the four isolates were consistent with Pythium ultimum Trow (Watanabe, 2002). Genomic DNAs (NORGEN BIOTEK CORP, Fungi DNA Isolation Kit #26200) of four isolates were used for polymerase chain reaction (PCR) with the ITS6-ITS7 primers (Taheri et al., 2017). Subsequently, PCR products were flushed by E.Z.N.A ®Cycle Pure Kit, OMEGA and four samples were sent for Sanger sequencing to GenScript (GenScript, Piscataway, NJ). The sequences were identical and submitted to GenBank, NCBI (accession no. MN398593). The NCBI Blast analysis showed 100% sequence homology to Pythium ultimum with the following GenBank accessions; KF181451.1, KF181449.1 and AY598657.2. Pathogenicity test was done on sugar beet with the same isolates in the greenhouse. Two week old, pythium culture was mixed with vermiculite and perlite mixer (PRO-MIX FLX) in the plastic trays (24´´ x 15´´× 3˝), (22 °C, 75% Relaive Humidity). Sterile water (500 ml/each tray) was added in the mixer to provide sufficient moisture. Twenty seeds of cv. Hilleshog 4302 were sown in the tray, and the trays were replicated thrice with inoculated and mock treatments. Plants were watered as needed to maintain adequate soil moisture conducive for plant growth and disease development. Seven days after sowing, 50% and 100% germination was observed in the inoculated and control treatments, respectively. At the beginning of the second week, 30% post-emergence damping-off was observed in the inoculated treatments. Diseased seedlings were gently pulled out from the pots where similar symptoms were observed in the sugar beet seedlings as described previously. No incidence of disease was observed in mock-treated seedlings. Consistent reisolation of Pythium ultimum was morphologically and molecularly confirmed from the diseased seedlings, thus fulfilling Koch’s postulates. Pythium spp identification is prerequisite to develop effective management of pre and post-emergence damping-off. Pythium ultimum was previously reported in Nebraska to cause sugar beet seed rot and pre-emergence damping-off (Harvenson 2006). To our knowledge, this is the first report of Pythium ultimum causing damping-off on sugar beet in the Sidney factory district in Montana.


2005 ◽  
Vol 71 (7) ◽  
pp. 3786-3796 ◽  
Author(s):  
Md. Tofazzal Islam ◽  
Yasuyuki Hashidoko ◽  
Abhinandan Deora ◽  
Toshiaki Ito ◽  
Satoshi Tahara

ABSTRACT We previously demonstrated that xanthobaccin A from the rhizoplane bacterium Lysobacter sp. strain SB-K88 suppresses damping-off disease caused by Pythium sp. in sugar beet. In this study we focused on modes of Lysobacter sp. strain SB-K88 root colonization and antibiosis of the bacterium against Aphanomyces cochlioides, a pathogen of damping-off disease. Scanning electron microscopic analysis of 2-week-old sugar beet seedlings from seeds previously inoculated with SB-K88 revealed dense colonization on the root surfaces and a characteristic perpendicular pattern of Lysobacter colonization possibly generated via development of polar, brush-like fimbriae. In colonized regions a semitransparent film apparently enveloping the root and microcolonies were observed on the root surface. This Lysobacter strain also efficiently colonized the roots of several plants, including spinach, tomato, Arabidopsis thaliana, and Amaranthus gangeticus. Plants grown from both sugar beet and spinach seeds that were previously treated with Lysobacter sp. strain SB-K88 displayed significant resistance to the damping-off disease triggered by A. cochlioides. Interestingly, zoospores of A. cochlioides became immotile within 1 min after exposure to a SB-K88 cell suspension, a cell-free supernatant of SB-K88, or pure xanthobaccin A (MIC, 0.01 μg/ml). In all cases, lysis followed within 30 min in the presence of the inhibiting factor(s). Our data indicate that Lysobacter sp. strain SB-K88 has a direct inhibitory effect on A. cochlioides, suppressing damping-off disease. Furthermore, this inhibitory effect of Lysobacter sp. strain SB-K88 is likely due to a combination of antibiosis and characteristic biofilm formation at the rhizoplane of the host plant.


Plant Disease ◽  
1998 ◽  
Vol 82 (9) ◽  
pp. 1029-1032 ◽  
Author(s):  
G. Y. Yuen ◽  
J. Q. Xia ◽  
C. L. Sutula

A double-antibody sandwich indirect enzyme-linked immunosorbent assay (ELISA) was developed for the detection and quantification of Pythium ultimum. A polyclonal antibody produced to cell walls of P. ultimum was used as the capture antibody, while a P. ultimum-specific mono-clonal antibody (MAb E5) was used for recognition of the fungus. In the ELISA, culture extracts of 7 isolates of P. ultimum exhibited strong positive reactions, whereas none of the 37 isolates of other Pythium spp. and fungal genera had positive reactions. P. ultimum was detected by ELISA in roots of bean, cabbage, and sugar beet seedlings grown in pathogen-infested soil. ELISA optical density readings for infected bean and sugar beet root samples were highly correlated (r > 0.9) with infection levels determined by culturing the samples on water agar. The correlation between the two methods of testing cabbage roots was low, but all cabbage roots in which P. ultimum was detected by culturing were strongly positive in the ELISA. Samples of roots infected with P. irregulare and those with no Pythium infection did not react in the ELISA. The ELISA was highly sensitive; the fungus was detected in culture extracts diluted 1:5,000,000 and in roots with less than 1 infection per 100 cm root.


2002 ◽  
Vol 92 (6) ◽  
pp. 1078-1086 ◽  
Author(s):  
D.G. Georgakopoulos ◽  
P. Fiddaman ◽  
C. Leifert ◽  
N.E. Malathrakis

Plant Disease ◽  
1998 ◽  
Vol 82 (3) ◽  
pp. 294-299 ◽  
Author(s):  
W. Mao ◽  
R. D. Lumsden ◽  
J. A. Lewis ◽  
P. K. Hebbar

Bioassays were conducted in a greenhouse at 18°C to determine the effectiveness of a seed treatment used in combination with biocontrol agents for the reduction of corn damping-off caused by species of Pythium and Fusarium. Corn seeds were infiltrated with tap water, drained, air-dried, and then coated with biomass of an antagonistic fungus, Gliocladium virens isolate Gl-3, or an antagonistic bacterium, Burkholderia cepacia isolates Bc-B or Bc-1, or a combination of Gl-3 with each of the bacterial isolates. A nonsterile field soil was infested with a combination of pathogens: Pythium ultimum, P. arrhenomanes, and Fusarium graminearum at 2 inoculum rates (1× and 4×). Pre-infiltration enhanced (P ≤ 0.05) disease control with most treatments at both inoculum rates. Treatments with biocontrol agents alone or in combination, as well as the fungicide captan, effectively reduced the disease at a pathogen inoculum rate of 1×, resulting in greater (P ≤ 0.05) seedling stands, plant height, and fresh weight, and lower (P ≤ 0.05) root rot severity compared with untreated seeds in infested soil. At a pathogen inoculum rate of 4×, stands were lower (P ≤ 0.01) and root-rot severity was higher (P ≤ 0.01) compared to those at 1× for all treatments. Nevertheless, coating seeds with all biocontrol agents (alone or in combination), except with Bc-1 alone, reduced disease (P ≤ 0.05) compared to untreated seeds in infested soil. At both inoculum rates of 1× and 4×, coating seeds with Gl-3 + Bc-B was more effective (P ≤ 0.05) in disease control than any other treatment, resulting in stands, growth rate (plant height and fresh weight), and root rot severity similar to plants from untreated seeds in noninfested soil. In addition, when the exudate from a 2-h infiltration of corn seed was added to the seeds during seed coating, seedling stand was often lower and root rot severity was often higher than those from infiltrated seeds (P ≤ 0.05). These results indicated that the infiltration process removed certain exudates, including nutrients and/or stimulants (not detected in this study) that might be utilized by pathogens to initiate seed infection. A thin-layer chromatography (TLC) profile of the exudates showed the presence of eight amino acids and three major carbohydrates.


Plant Disease ◽  
2007 ◽  
Vol 91 (2) ◽  
pp. 220-225 ◽  
Author(s):  
E. Grimme ◽  
N. K. Zidack ◽  
R. A. Sikora ◽  
G. A. Strobel ◽  
B. J. Jacobsen

A biorational synthetic mixture of organic components mimicking key antimicrobial gases produced by Muscodor albus was equivalent to the use of live M. albus for control of seedling diseases of sugar beet (Beta vulgaris) caused by Pythium ultimum, Rhizoctonia solani AG 2-2, and Aphanomyces cochlioides. The biorational mixture provided better control than the live M. albus formulation for control of root-knot nematode, Meloidogyne incognita, on tomato (Lycopersicon esculentum). The biorational mixture provided control of damping-off equal to a starch-based formulation of the live fungus for all three sugar beet pathogens, and significantly reduced the number of root-knot galls on tomato roots compared with a barley-based formulation. Rate studies with the biorational mixture showed that 2 and 0.75 µl/cm3 of soil were required to provide optimal control of Rhizoctonia and Pythium damping-off of sugar beet, respectively. Five microliters of biorational mixture per milliliter of water was required for 100% mortality in 24 h for Meloidogyne incognita in in vitro studies. In in vivo studies, 1.67 µl of the biorational mixture/cm3 of sand resulted in fewer root-knot galls than a Muscodor albus infested ground barley formulation applied at 5 g/liter of sand.


Sign in / Sign up

Export Citation Format

Share Document