Structure evolution of a magnetite iron ore/carbon composite pellet during solid-state reduction under microwave heating

Author(s):  
Cuong Phung Kien ◽  
◽  
Dung Ngo Quoc ◽  
Anh Do Thi ◽  
Hieu Nguyen Sy ◽  
...  

In the present study, the structure evolution under direct reduction of a Minh-Son magnetite iron ore/carbon composite pellets in a microwave-heating kiln under different microwave wattage of 60 and 90 % (with the firing time from 15 to 120 min.) was investigated. The microstructure of the pellets was characterized by scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction (XRD). The phase formation was indexed using MDI Jade from the peaks matching the reference sample. At the microwave’s wattage of 60 %: the wustite (FeO) has appeared after firing time of 60 min., the metallic iron and fayalite have appeared in the reduced samples after firing time of 90 min. to 120 min. with retained phases of Fe203, Fe304, FeO and Si02– While at the microwave’s wattage of 90 %, the metallic iron has appeared in the reduced samples after firing time of 30 min. to 120 min and fayalite has appeared in the reduced samples after firing time of 60 min. to 120 min. The final reduced pellet, under microwave’s wattage of 90 % and firing time of 120 min., shows the only phases of metallic iron and fayalite according to the XRD resolution. The present work could provide a scientific understanding to illustrate iron ore/carbon composite pellet behavior during solid-state carbothermic reduction under a microwave-heating.

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1050 ◽  
Author(s):  
Guang Wang ◽  
Jingsong Wang ◽  
Qingguo Xue

The volume shrinkage evolution of a magnetite iron ore/carbon composite pellet during solid-state isothermal reduction was investigated. For the shrinkage, the apparent activation energy and mechanism were obtained based on the experimental results. It was found that the volume shrinkage highly depended on the reduction temperature and on dwell time. The volume shrinkage of the pellet increased with the increasing reduction temperature, and the rate of increment was fast during the first 20 min of reduction. The shrinkage of the composite pellet was mainly due to the weight loss of carbon and oxygen, the sintering growth of gangue oxides and metallic iron particles, and the partial melting of the gangue phase at high temperature. The shrinkage apparent activation energy was different depending on the time range. During the first 20 min, the shrinkage apparent activation energy was 51,313 J/mol. After the first 20 min, the apparent activation energy for the volume shrinkage was only 19,697 J/mol. The change of the reduction rate-controlling step and the automatic sintering and reconstruction of the metallic iron particles and gangue oxides in the later reduction stage were the main reasons for the aforementioned time-dependent phenomena. The present work could provide a unique scientific index for the illustration of iron ore/carbon composite pellet behavior during solid-state carbothermic reduction.


2015 ◽  
Vol 55 (4) ◽  
pp. 727-735 ◽  
Author(s):  
Jian Pan ◽  
Congcong Yang ◽  
Deqing Zhu

2021 ◽  
Vol 22 (2) ◽  
pp. 292-300
Author(s):  
Kali Charan Sabat

Presently, Iron is produced from iron ores by using carbon from coal. The production process is consisting of many stages. The involvement of multi-stages needs high capital investments, large-scale equipments, and produces large amounts of carbon dioxide (CO2) responsible for environmental pollution. There have been significant efforts to replace carbon with hydrogen (H2). Although H2 is the strongest reductant, it still also has thermodynamic and kinetic limitations. However, these thermodynamic and kinetic limitations could be removed by hydrogen plasma (HP). HP comprises rovibrationally excited molecular, atomic, and ionic states of hydrogen. All of them contribute to thermodynamic advantage by making the Gibbs standard free energy more negative, which makes the reduction of iron oxides feasible at low temperatures. Apart from the thermodynamic advantage, these excited species increase the internal energy of HP, which reduces the activation energy, thereby making the reduction easier and faster. Apart from the thermodynamic and kinetic advantage of HP, the byproduct of the reaction is environmentally benign water. This review discusses the physics and chemistry of iron ore reduction using HP, emphasizing the solid-state reduction of iron ore. HP reduction of iron ore is a high potential and attractive reduction process.


Sign in / Sign up

Export Citation Format

Share Document