Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method

2015 ◽  
Vol 18 (2) ◽  
pp. 14-21
Author(s):  
Ki-Ha Kim ◽  
Dong-Hyun Kim ◽  
Young-Seob Kwak ◽  
Su-Hyun Kim
2021 ◽  
pp. 0309524X2110445
Author(s):  
Hiroshi Noda ◽  
Takeshi Ishihara

Mean wind forces and peak pressures acting on ellipsoidal nacelles are investigated by wind tunnel tests. The wind force coefficients of the ellipsoidal nacelles for the wind turbine design and the peak pressure coefficients for the nacelle cover design are proposed based on the experimental data. The wind force coefficients are expressed as functions of yaw angles. The proposed formulas are compared with Eurocode, Germanischer Lloyd and ASCE7-16. It is found that the mean wind force coefficients for the wind turbine nacelles are slightly underestimated in Eurocode. The equivalent maximum and minimum mean pressure coefficients are proposed for use in Design Load Case 6.1 and Design Load Case 6.2 of IEC 61400-1. The peak pressure coefficients are derived using a quasi-steady theory. The proposed equivalent maximum and minimum mean pressure coefficients are much larger than those specified in Germanischer Lloyd.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Yan Wang ◽  
Ruifeng Hu ◽  
Xiaojing Zheng

Leading edge erosion is a considerable threat to wind turbine performance and blade maintenance, and it is very imperative to accurately predict the influence of various degrees of erosion on wind turbine performance. In the present study, an attempt to investigate the effects of leading edge erosion on the aerodynamics of wind turbine airfoil is undertaken by using computational fluid dynamics (CFD) method. A new pitting erosion model is proposed and semicircle cavities were used to represent the erosion pits in the simulation. Two-dimensional incompressible Reynolds-averaged Navier–Stokes equation and shear stress transport (SST) k–ω turbulence model are adopted to compute the aerodynamics of a S809 airfoil with leading edge pitting erosions, where the influences of pits depth, densities, distribution area, and locations are considered. The results indicate that pitting erosion has remarkably undesirable influences on the aerodynamic performance of the airfoil, and the critical pits depth, density, and distribution area degrade the airfoil aerodynamic performance mostly were obtained. In addition, the dominant parameters are determined by the correlation coefficient path analysis method, results showed that all parameters have non-negligible effects on the aerodynamics of S809 airfoil, and the Reynolds number is of the most important, followed by pits density, pits depth, and pits distribution area. Meanwhile, the direct and indirect effects of these factors are analyzed, and it is found that the indirect effects are very small and the parameters can be considered to be independent with each other.


2020 ◽  
Author(s):  
Shine Win Naung ◽  
Mohammad Rahmati ◽  
Hamed Farokhi

Abstract The high-fidelity computational fluid dynamics (CFD) simulations of a complete wind turbine model usually require significant computational resources. It will require much more resources if the fluid-structure interactions between the blade and the flow are considered, and it has been the major challenge in the industry. The aeromechanical analysis of a complete wind turbine model using a high-fidelity CFD method is discussed in this paper. The distinctiveness of this paper is the application of the nonlinear frequency domain solution method to analyse the forced response and flutter instability of the blade as well as to investigate the unsteady flow field across the wind turbine rotor and the tower. This method also enables the aeromechanical simulations of wind turbines for various inter blade phase angles in a combination with a phase shift solution method. Extensive validations of the nonlinear frequency domain solution method against the conventional time domain solution method reveal that the proposed frequency domain solution method can reduce the computational cost by one to two orders of magnitude.


2015 ◽  
Vol 772 ◽  
pp. 90-95 ◽  
Author(s):  
Ion Mălăel ◽  
Valeriu Drăgan ◽  
Georgel Vizitiu

In this paper, numerical studies have been conducted in order to evaluate the efficiency of a vertical axis wind turbine by using CFD methods. For these studies, it has been used SIMPLE type pressure-based coupled solver. The complexity and the unsteadiness character of the flow in such a machine, requires the use of unsteady RANS models. To determine the accuracy of the solution obtained by URANS models, this paper makes a comparative analysis with the same case and LES modeling. Analyses were performed with a 2D grid consisting of two regions, a rotor and a stator. The airfoil of the VAWT is a classic NACA0018. Results indicate that the poor accuracy of the URANS CFD method is mainly due to its limitation in the vortex modeling. In general the LES modeling have a better agreement with the experimental results from the wind tunnel.


2013 ◽  
Vol 446-447 ◽  
pp. 452-457 ◽  
Author(s):  
Yong Wang ◽  
De Tian ◽  
Wei He

The hoisting forces on a 38.5m wind turbine blade in multiple positions are computed using the computational fluid dynamics (CFD) method. The computation model is constructed with the steady wind conditions, blade mesh model and the blade positions which are determined by the blade pitch angle, azimuth angle and rotor yaw angle. The maximal and minimal hoisting forces in three-dimensional coordinates are found and the corresponding pitch angle, azimuth angle and yaw angle are obtained. The change of the hoisting forces on wind turbine blades is analyzed. Suggestions are given to decrease the hoisting forces of the blade in open wind environment.


Author(s):  
Tomoaki Utsunomiya ◽  
Iku Sato ◽  
Osamu Kobayashi ◽  
Takashi Shiraishi ◽  
Takashi Harada

In this paper, numerical modelling and analysis of a hybrid-spar floating wind turbine is presented. The hybrid-spar consists of steel at the upper part and the precast prestressed concrete (PC) at the lower part. Such a configuration is referred to as a hybrid-spar in this paper. The hybrid spar was successfully installed offshore of Kabashima Island, Goto city, Nagasaki prefecture, Japan on October 18, 2013 (see OMAE2015-41544 [1] for details). In this paper, some details on numerical modelling of the hybrid-spar for design load analysis are presented. Then, the validation of the numerical analysis model is presented for a full-scale hybrid-spar model with 2-MW wind turbine.


Sign in / Sign up

Export Citation Format

Share Document