scholarly journals Enhanced proliferation and differentiation effects of a CGRP- and Sr-enriched calcium phosphate cement on bone mesenchymal stem cells

2016 ◽  
Vol 14 (4) ◽  
pp. 0-0
Author(s):  
Wei Liang ◽  
Li Li ◽  
Xu Cui ◽  
Zhongfei Tang ◽  
Xiaomou Wei ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 9117-9125
Author(s):  
Ting Ma ◽  
Xi-Yuan Ge ◽  
Ke-Yi Hao ◽  
Xi Jiang ◽  
Yan Zheng ◽  
...  

Titanium discs with simple 3,4-dihydroxy-l-phenylalanine coating enhanced BM-MSC adhesion, spreading, proliferation and differentiation, and upregulated expression of genes involved in focal adhesion in vitro.


2008 ◽  
Vol 47-50 ◽  
pp. 1383-1386 ◽  
Author(s):  
Han Guo ◽  
Jie Wei ◽  
Hang Kong ◽  
Chang Sheng Liu ◽  
Ke Feng Pan

Porous calcium phosphate cement (CPC) scaffolds were successfully fabricated utilizing particle-leaching method. Mesenchymal stem cells (MSCs) were cultured, expanded and seeded on the scaffolds and the proliferation and differentiation of MSCs into osteoblastic phenotype were determined using MTT assay, ALP activity and ESEM. The results revealed that the CPC scaffolds were biocompatible and had no negative effects on the MSCs in vitro. The in vivo biocompatibility and osteogenicity of the scaffolds were investigated. Both pure scaffolds and MSCs/scaffold constructs were implanted in rabbit mandibles and studied histologically. The results showed that CPC scaffolds exhibited good biocompatibility and osteoconductivity. Moreover, the introduction of MSCs into the scaffolds dramatically enhanced the efficiency of new bone formation initially.


Author(s):  
Yiqun Ma ◽  
Yuwang You ◽  
Lu Cao ◽  
Bing Liang ◽  
Bo Tian ◽  
...  

In consideration of improving the interface problems of poly-L-lactic acid (PLLA) that hindered biomedical use, surface coatings have been explored as an appealing strategy in establishing a multi-functional coating for osteogenesis. Though the layer-by-layer (LBL) coating developed, a few studies have applied double-crosslinked hydrogels in this technique. In this research, we established a bilayer coating with double-crosslinked hydrogels [alginate–gelatin methacrylate (GelMA)] containing bone morphogenic protein (BMP)-2 [alginate-GelMA/hydroxyapatite (HA)/BMP-2], which displayed great biocompatibility and osteogenesis. The characterization of the coating showed improved properties and enhanced wettability of the native PLLA. To evaluate the biosafety and inductive ability of osteogenesis, the behavior (viability, adherence, and proliferation) and morphology of human bone mesenchymal stem cells (hBMSCs) on the bilayer coatings were tested by multiple exams. The satisfactory function of osteogenesis was verified in bilayer coatings. We found the best ratios between GelMA and alginate for biological applications. The Alg70-Gel30 and Alg50-Gel50 groups facilitated the osteogenic transformation of hBMSCs. In brief, alginate-GelMA/HA/BMP-2 could increase the hBMSCs’ early transformation of osteoblast lineage and promote the osteogenesis of bone defect, especially the outer hydrogel layer such as Alg70-Gel30 and Alg50-Gel50.


2021 ◽  
Vol 10 (8) ◽  
pp. 526-535
Author(s):  
Wei Xin ◽  
Shuai Yuan ◽  
Bo Wang ◽  
Qirong Qian ◽  
Yi Chen

Aims Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development. Methods RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations. Results Circ_0066523 was upregulated in osteogenic induction process of BMSCs. Silencing circ_0066523 restrained the proliferation and osteogenic differentiation of BMSCs. Mechanistically, circ_0066523 activated phosphatidylinositol-4,5-bisphosphate 3-kinase / AKT serine/threonine kinase 1 (PI3K/AKT) pathway via recruiting lysine demethylase 5B (KDM5B) to epigenetically repress the transcription of phosphatase and tensin homolog (PTEN). Functionally, AKT signalling pathway agonist or PTEN knockdown counteracted the effects of silenced circ_0066523 on BMSC proliferation and differentiation. Conclusion Circ_0066523 promotes the proliferation and differentiation of BMSCs by epigenetically repressing PTEN and therefore activating AKT pathway. This finding might open new avenues for the identification of therapeutic targets for osteoblast differentiation related diseases such as ONFH. Cite this article: Bone Joint Res 2021;10(8):526–535.


Sign in / Sign up

Export Citation Format

Share Document