scholarly journals Fault Detection Method of Laser Inertial Navigation System Based on the Overlapping Model

2011 ◽  
Vol 17 (11) ◽  
pp. 1106-1116 ◽  
Author(s):  
Cheon-Joong Kim ◽  
Ki-Jeong Yoo ◽  
Hyeon-Suk Kim ◽  
Joon Lyou
Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2911 ◽  
Author(s):  
Ling Zhang ◽  
Yuchen Cui ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Jizhou Lai ◽  
...  

In order to obtain accurate and optimized navigation sensor information, it is necessary to study information fusion and fault diagnosis with high reliability, high precision and high autonomy, and then to propose a rapid and accurate intelligent decision-making scheme based on multi-source and heterogeneous navigation information. In view of the existing fault-tolerant navigation federated filter structure, the method of assuming the reference system (inertial navigation system) to be fault-free and then diagnosing the measuring sensor fault is generally adopted. Considering that the structure of the filter can’t detect and isolate the faults of the inertial navigation system, the performance of the MEMS inertial navigation system declines due to complex environments resulting from vibrations and temperature changes; additionally, external interference may lead to the direct failure of the MEMS inertial device. Therefore, this paper studies a fault-tolerant navigation method based on a no-reference system. For the sensor sub-system of a custom micro air vehicle (MAV), a fault detection method based on a reference-free system is proposed. Based on the fault type analysis, some improvements have been made to the existing residual chi-square detection method, and an interactive residual fault detection method with distributed states is proposed. On this basis, aiming at the characteristics of a reference-free system, the weight distribution scheme of the reference system and the tested systems are studied, and a self-regulation filter fusion and fault detection method based on reference-free system is designed.


2011 ◽  
Vol 179-180 ◽  
pp. 1242-1247 ◽  
Author(s):  
Yu Rong Lin ◽  
Si Yan Guo ◽  
Guang Ying Zhang

A fault detection method applied to a redundant strapdown inertial navigation system, which usually undergoes rapid maneuvers, is developed in this paper. First, an improved four-points detection scheme that can significantly reduce the probability of false alarm of the generalized likelihood test(GLT) is present. Then, based on analyzing influences on the fault detection performance caused by the misalignment and scale fator errors and the random bias of a gyroscope, a parity vector error model is constructed and sequently the Kalman filtering scheme to compensate the parity vector error is designed. By example of a redundant measurement unit with four single-freedom-degree gyros, the fault detection method has been analyzed qualitatively and quantitatively through simulation tests. Simulation results demonstrate the favorable performance of the method.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoyue Zhang ◽  
Pengbo Liu ◽  
Chunxi Zhang

To ensure the high accuracy, independence, and reliability of the measurement system in the unmanned aerial vehicle (UAV) landing process, an integration method of inertial navigation system (INS) and the three-beam Lidar is proposed. The three beams of Lidar are, respectively, regarded as an independent sensor to integrate with INS according to the conception of multisensor fusion. Simultaneously, the fault-detection and reconstruction method is adopted to enhance the reliability and fault resistance. First the integration method is described. Then the strapdown inertial navigation system (SINS) error model is introduced and the measurement model of SINS/Lidar integrated navigation is deduced under Lidar reference coordinate. The fault-detection and reconstruction method is introduced. Finally, numerical simulation and vehicle test are carried out to demonstrate the validity and utility of the proposed method. The results indicate that the integration can obtain high precision navigation information and the system can effectively distinguish the faults and accomplish the reconstruction to guarantee the normal navigation when one or two beams of the Lidar malfunction.


2014 ◽  
Vol 709 ◽  
pp. 473-479 ◽  
Author(s):  
Kun Peng He ◽  
Yu Ping Shao ◽  
Lin Zhang ◽  
Shou Lei Hu ◽  
Yuan Li

In order to improve the precision and reliability of the autonomous underwater vehicle (AUV) inertial navigation system, a redundant inertial measurement unit (RIMU) based on micro electromechanical system (MEMS) inertial sensors has been designed, then use support vector machine theory (SVM),construct multi-fault classifier training and combine three-step search parameter optimization method,to achieve rapid, automatic fault detection and isolation (FDI). With Monte Carlo simulation and experimental analysis, SVM method has more obvious advantages than conventional Generalized Likelihood ratio Test (GLT) on false alarm rate, undetected rate and correct isolation rate for common fault sources of RIMU, and can detect and identify the type and number of failure more effectively on redundant systems, and provide a guarantee for fault sensors isolation.


Sign in / Sign up

Export Citation Format

Share Document