Development of High-efficiency Spray Control Algorithm based on Gaussian Filter for Orchard Robot Speed-sprayer using LiDAR

2021 ◽  
Vol 27 (11) ◽  
pp. 897-905
Author(s):  
Changju Yang ◽  
Jinho Won ◽  
Gookhwan Kim ◽  
Kyung-Do Kwon ◽  
Kyung-Chul Kim ◽  
...  
Author(s):  
Changju Yang ◽  
Jin-ho Won ◽  
Gookhwan Kim ◽  
Kyung-Do Kwon ◽  
Kyoung-Chul Kim ◽  
...  

Author(s):  
Marwa Meddeb ◽  
Marco Cagnazzo ◽  
Béatrice Pesquet-Popescu

This paper presents a novel rate control scheme designed for the newest high efficiency video coding (HEVC) standard, and aimed at enhancing the quality of regions of interest (ROI) for a videoconferencing system. It is designed to consider the different regions at both frame level and coding tree unit (CTU) level. The proposed approach allocates a higher bit rate to the region of interest while keeping the global bit rate close to the assigned target value. The ROIs, typically faces in this application, are automatically detected and each CTU is classified in a region of interest map. This binary map is given as input to the rate control algorithm and the bit allocation is made accordingly. The algorithm is tested, first, using the initial version of the controller introduced in HEVC test model (HM.10), then, extended in HM.13. In this work, we first investigate the impact of differentiated bit allocation between the two regions using a fixed bit rate ratio in intra-coded frames (I-frames) and Bidirectionally predicted frames (B-frames). Then, unit quantization parameters (QPs) are computed independently for CTUs of different regions. The proposed approach has been compared to the reference controller implemented in HM and to a ROI-based rate control algorithm initially proposed for H.264 that we adopted to HEVC and implemented in HM.9. Experimental results show that our scheme has comparable performances with the ROI-based controller proposed for H.264. It achieves accurate target bit rates and provides an improvement in region of interest quality, both in objective metrics (up to 2 dB in PSNR) and based on subjective quality evaluation.


Author(s):  
B. Shayak

In this work, a design is proposed for an active, permanent magnet based, self-propelled magnetic bearing, i.e. levitating motor having the following features: (i) simple winding structure, (ii) high load supporting capacity, (iii) no eccentricity sensors, (iv) stable confinement in all translational dimensions, (v) stable confinement in all rotational dimensions, and (vi) high efficiency. This design uses an architecture consisting of a helically wound three-phase stator, and a rotor with the magnets also arranged in a helical manner. Active control is used to excite the rotor at a torque angle lying in the second quadrant. This torque angle is independent of the rotor's position inside the stator cavity; hence the control algorithm is similar to that of a conventional permanent magnet synchronous motor. It is motivated through a physical argument that the bearing rotor develops a lift force proportional to the output torque and that it remains stably confined in space. These assertions are then proved rigorously through a calculation of the magnetic fields, forces and torques. The stiffness matrix of the system is presented and a discussion of stable and unstable operating regions is given.


2012 ◽  
Vol 457-458 ◽  
pp. 764-772 ◽  
Author(s):  
Fang Rong Wang ◽  
Ru Wen Kan ◽  
Shu Nan Liu ◽  
Xu Bin Dong ◽  
Tao Shang ◽  
...  

As the complexity of marine environment and the existence of uncertain factors along with Unmanned Underwater Vehicle (UUV) dynamics itself bringing many nonlinear problems, it is difficult to control the navigation in accordance with a predetermined trajectory. Based on the UUV dynamics analysis and system modeling, this paper decoupled its control system into three sub-control systems, designed robust autopilot using H∞ mixed sensitivity control algorithm to generate the low-order controller to achieve independent control of three degrees of freedom. Eventually, the underwater navigation simulation results show that the proposed method can provide better control performance and the method is feasible and high efficiency in actual applications.


2013 ◽  
Vol 313-314 ◽  
pp. 1100-1104
Author(s):  
En Zhe Song ◽  
Chang Xi Ji ◽  
Mei Liang Yin ◽  
Jun Sun ◽  
Cheng Shun Yin

This paper establishes the mathematical model of the volume speed-modulating system and simulates dynamically with Matlab/Simulink. Provide a theoretical basis for algorithm of close loop control [ of the three variables which are diesel engines, variable pump and variable motor. Use PID control algorithm, through simulation and analysis, find out the parameter optimization adjustment rule [2,, seek matching operation between three variables. Provide a theoretical basis for the study on dynamic system of full-hydraulic loaders and have very important practical significance in realizing high efficiency energy saving and reducing energy consumption.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 166 ◽  
Author(s):  
Tao Yan ◽  
In-Ho Ra ◽  
Qian Zhang ◽  
Hang Xu ◽  
Linyun Huang

Most existing rate control algorithms are based on the rate-quantization (R-Q) model. However, with video coding schemes becoming more flexible, it is very difficult to accurately model the R-Q relationship. Therefore, in this study we propose a novel ρ domain rate control algorithm for multiview high efficiency video coding (MV-HEVC). Firstly, in order to further improve the efficiency of MV-HEVC, this paper uses our previous research algorithm to optimize the MV-HEVC prediction structure. Then, we established the ρ domain rate control model based on multi-objective optimization. Finally, it used image similarity to analyze the correlation between viewpoints, using encoded information and frame complexity to proceed in bit allocation and bit rate control of the inter-view, frame lay, and base unit. The experimental simulation results show that the algorithm can simultaneously maintain high coding efficiency, where the average error of the actual bit rate and the target bit rate is only 0.9%.


Sign in / Sign up

Export Citation Format

Share Document