Placental hormone loss spurs autism-like traits in mice

2021 ◽  
Author(s):  
Angie Voyles Askham
Keyword(s):  
2021 ◽  
Vol 22 (15) ◽  
pp. 8150
Author(s):  
Amelia R. Tanner ◽  
Cameron S. Lynch ◽  
Victoria C. Kennedy ◽  
Asghar Ali ◽  
Quinton A. Winger ◽  
...  

Deficiency of the placental hormone chorionic somatomammotropin (CSH) can lead to the development of intrauterine growth restriction (IUGR). To gain insight into the physiological consequences of CSH RNA interference (RNAi), the trophectoderm of hatched blastocysts (nine days of gestational age; dGA) was infected with a lentivirus expressing either a scrambled control or CSH-specific shRNA, prior to transfer into synchronized recipient sheep. At 90 dGA, umbilical hemodynamics and fetal measurements were assessed by Doppler ultrasonography. At 120 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies with the 3H2O transplacental diffusion technique at 130 dGA. Nutrient uptake rates were determined and tissues were subsequently harvested at necropsy. CSH RNAi reduced (p ≤ 0.05) both fetal and uterine weights as well as umbilical blood flow (mL/min). This ultimately resulted in reduced (p ≤ 0.01) umbilical IGF1 concentrations, as well as reduced umbilical nutrient uptakes (p ≤ 0.05) in CSH RNAi pregnancies. CSH RNAi also reduced (p ≤ 0.05) uterine nutrient uptakes as well as uteroplacental glucose utilization. These data suggest that CSH is necessary to facilitate adequate blood flow for the uptake of oxygen, oxidative substrates, and hormones essential to support fetal and uterine growth.


Endocrine ◽  
1995 ◽  
Vol 3 (4) ◽  
pp. 251-254 ◽  
Author(s):  
E. R. Barnea ◽  
T. Maruo ◽  
R. Schurtz-Swirsky

1975 ◽  
Vol 7 (06) ◽  
pp. 515-520 ◽  
Author(s):  
F. Beas ◽  
A. Salinas ◽  
F. González ◽  
C. Teran ◽  
P. Szendro ◽  
...  

1998 ◽  
Vol 12 (5) ◽  
pp. 766-772
Author(s):  
Mesut Muyan ◽  
Irving Boime

Abstract The placental hormone human CG (hCG) consists of two noncovalently linked α- and β-subunits similar to the other glycoprotein hormones LH, FSH, and TSH. These heterodimers share a common α subunit but differ in their structurally distinct β subunits. The CGβ subunit is distinguished among the β subunits by the presence of a C-terminal extension with four serine-linked oligosaccharides (carboxyl terminal peptide or CTP). In previous studies we observed that deleting this sequence decreased assembly of the truncated CGβ subunit (CGβ114) with the α-subunit and increased the heterogeneity of the secreted forms of the uncombined subunit synthesized in transfected Chinese hamster ovary (CHO) cells. The latter result was attributed to alterations in the processing of the two N-linked oligosaccharides. To examine at what step this heterogeneity occurs, the CGβ and CGβ114 genes were transfected into wild-type and mutant CHO cell lines that are defective in the late steps of the N-linked carbohydrate-processing pathway. We show here that removal of the CTP alters the processing of the core mannosyl unit of the subunit to complex forms at both glycosylation sites and that the oligosaccharides contain polylactosamine. Although it has been presumed that there is little intramolecular interaction between the CTP and the proximal domains of the subunit, our data suggest that the CTP sequence participates in the folding of the newly synthesized subunit, which is manifest by the posttranslational changes observed here.


2007 ◽  
Vol 26 (5) ◽  
pp. 407-417 ◽  
Author(s):  
Katarzyna Augustowska ◽  
Zofia Magnowska ◽  
Maria Kapiszewska ◽  
Ewa L. Gregoraszczuk

The present study was conducted to define the action of a mixture obtained by the extraction and purification of real fly ash, on specific toxicity endpoints, such as hormonal secretion, CYP1A1 expression, DNA damage and cell apoptosis. JEG-3 cell line was exposed in vitro to different doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or Polychlorinated dibenzo-p-dioxin/Polychlorinated dibenzo-P-furan (PCDD/PCDF) mixture. Both TCDD and the mixture decreased hCG secretion, while inhibition of progesterone levels was noted only under the influence of TCDD. The changes in hormone production were not due to the action on cell viability. There were time-dependent differences in CYP1A1 expression in cells exposed to TCDD and PCDD/PCDF mixture. Both TCDD and PCDD/PCDF mixture did not induce the DNA damage, as evaluated by the comet assay. Significantly lower DNA migration from the head of comet into the comet tail was noted after the removal of reagents. The highest efficiency of this process was noted 4 h after the TCDD and 24 h after the PCDD/PCDF mixture removal. These results suggest that the DNA adducts and/or DNA—DNA cross-links were formed. Neither TCDD nor PCDD/PCDF mixture had any effect on cell apoptosis assessed by caspase-3 activity and Hoechst 33258. Taken together, these findings clearly indicate a weaker action of the mixture when compared with TCDD. However, in both cases, their action was not due to the induction of the DNA damage and subsequent cell apoptosis but due to a direct influence of these toxicants on placental hormone production. Human & Experimental Toxicology ( 2007) 26, 407—417


2019 ◽  
Vol 116 (45) ◽  
pp. 22635-22644 ◽  
Author(s):  
Rachel C. West ◽  
Hao Ming ◽  
Deirdre M. Logsdon ◽  
Jiangwen Sun ◽  
Sandeep K. Rajput ◽  
...  

Single-cell RNA sequencing of cells from cultured human blastocysts has enabled us to define the transcriptomic landscape of placental trophoblast (TB) that surrounds the epiblast and associated embryonic tissues during the enigmatic day 8 (D8) to D12 peri-implantation period before the villous placenta forms. We analyzed the transcriptomes of 3 early placental cell types, cytoTB (CTB), syncytioTB (STB), and migratoryTB (MTB), picked manually from cultured embryos dissociated with trypsin and were able to follow sublineages that emerged from proliferating CTB at the periphery of the conceptus. A unique form of CTB with some features of STB was detectable at D8, while mature STB was at its zenith at D10. A form of MTB with a mixed MTB/CTB phenotype arose around D10. By D12, STB generation was in decline, CTB had entered a new phase of proliferation, and mature MTB cells had begun to move from the main body of the conceptus. Notably, the MTB transcriptome at D12 indicated enrichment of transcripts associated with IFN signaling, migration, and invasion and up-regulation of HLA-C, HLA-E, and HLA-G. The STB, which is distinct from the STB of later villous STB, had a phenotype consistent with intense protein export and placental hormone production, as well as migration and invasion. The studies show that TB associated with human embryos is in rapid developmental flux during peri-implantation period when it must invade, signal robustly to the mother to ensure that the pregnancy continues, and make first contact with the maternal immune system.


Sign in / Sign up

Export Citation Format

Share Document