scholarly journals Dynamic Price Control Using Pole Placement Method in Smart Grids

2021 ◽  
Author(s):  
Zehva YALÇINÖZ ◽  
Asım KAYGUSUZ
Author(s):  
Muhammad Aziz Muslim ◽  
Goegoes Dwi Nusantoro ◽  
Rini Nur Hasanah ◽  
Mokhammad Hasyim Asy’ari

This paper describes the method to control a hybrid robot whose main task is to climb a pole to place an object on the top of the pole. The hybrid pole-climbing robot considered in this paper uses 2 Planetary PG36 DC-motors as actuators and an external rotary encoder sensor to provide a feedback on the change in robot orientation during the climbing movement. The orientation control of the pole-climbing robot using self-tuning method has been realized by identifying the transfer function of the actuator system under consideration, being followed with the calculation of control parameters using the self-tuning pole-placement method, and furthermore being implemented on the external rotary encoder sensor. Self-tuning pole-placement method has been explored to control the parameters q<sub>0</sub>, q<sub>1</sub>, q<sub>2</sub>, and p<sub>1</sub> of the controller. The experiments were done on a movement path in a form of a cylindrical pole. The first experiment was done based one the change in rotation angle of the rotary sensor with the angle values greater than 50˚ in the positive direction, whereas the second experiment was done with the angle values greater than -50˚ in the negative direction. The experiment results show that the control of the robot under consideration could maintain its original position at the time of angle change disturbance and that the robot could climb in a straight direction within the specified tolerance of orientation angle change.


2019 ◽  
Vol 32 (4) ◽  
pp. 581-600
Author(s):  
Radmila Gerov ◽  
Zoran Jovanovic

The paper proposes a new method of identifying the linear model of a DC motor. The parameter estimation is based on the closed-loop step response of the DC motor under a proportional controller. For the application of the method, a deliberate delay of the measured speed was introduced. The paper considers the speed regulation of the direct current motor with negligible inductance by applying 1-DOF and 2-DOF, proportional integral retarded controllers. The proportional and integral gain of the PI retarded controllers was received by using a pole placement method on the identified model. The Lambert W function was applied for the identification and in designing the controller with the purpose of finding the rightmost poles of the closed-loop as well as the boundary conditions for selecting the gain of the PI controller. The robustness of the calculated controllers was considered under the effect of an disturbance, uncertainty in each of the DC motor parameters as well as perturbations in time delay.


2000 ◽  
Vol 10 (11) ◽  
pp. 2611-2617 ◽  
Author(s):  
ROBERTO TONELLI ◽  
YING-CHENG LAI ◽  
CELSO GREBOGI

Synchronization in chaotic systems has become an active area of research since the pioneering work of Pecora and Carroll. Most existing works, however, rely on a passive approach: A coupling between chaotic systems is necessary for their mutual synchronization. We describe here a feedback approach for synchronizing chaotic systems that is applicable in high dimensions. We show how two chaotic systems can be synchronized by applying small feedback perturbations to one of them. We detail our strategy to design the control based on the pole-placement method, and give numerical examples.


1994 ◽  
Vol 25 (8) ◽  
pp. 72-82 ◽  
Author(s):  
Kenji Takahara ◽  
Hidetoshi Wakamatsu

2018 ◽  
Vol 167 ◽  
pp. 39-47 ◽  
Author(s):  
Giorgia Simoneschi ◽  
Carlo Olivieri ◽  
Andrea M. de Leo ◽  
Angelo Di Egidio

Sign in / Sign up

Export Citation Format

Share Document