scholarly journals Resembling Population Density Distribution with Massive Mobile Phone Data

2018 ◽  
Vol 17 ◽  
Author(s):  
Teerayut Horanont ◽  
Thananut Phiboonbanakit ◽  
Santi Phithakkitnukoon
2020 ◽  
Vol 12 (12) ◽  
pp. 5018
Author(s):  
Yanyan Chen ◽  
Hanqiang Qian ◽  
Yang Wang

Evaluation of urban planning and development is becoming more and more important due to the large-scale urbanization of the world. With the application of mobile phone data, people can analyze the development status of cities from more perspectives. By using the mobile phone data of Beijing, the working population density in different regions was identified. Taking the working population density in Beijing as the research object and combining the land use of the city, the development status of Beijing was evaluated. A geographically weighted regression model (GWR) was used to analyze the difference in the impact of land use on the working population between different regions. By establishing a correlation model between the working population and land use, not only can the city’s development status be evaluated, but it can also help city managers and planners to make decisions to promote better development of Beijing.


2020 ◽  
Vol 9 (1) ◽  
pp. 38 ◽  
Author(s):  
Yi Shi ◽  
Junyan Yang ◽  
Peiyu Shen

Some studies have confirmed the association between urban public services and population density; however, other studies using census data, for example, have arrived at the opposite conclusion. Mobile signaling data provide new technological tools to investigate the subject. Based on the data of 20 million 2G mobile phone users in downtown Shanghai and the land use data of urban public service facilities, this study explores the spatiotemporal correlation between population density and public service facilities’ locations in downtown Shanghai and its variation laws. The correlation between individual population density at day vs. night and urban public service facilities distribution was also examined from a dynamic perspective. The results show a correlation between service facilities’ locations and urban population density at different times of the day. As a result, the average population density observed over a long period of time (day-time periodicity or longer) with census data or remote sensing data does not directly correlation with the distribution of public service facilities despite its correlation with public service facilities distribution. Among them, there is a significant spatial correlation between public service facilities and daytime population density and a significant spatial correlation between non-public service facilities and night-time population density. The spatial and temporal changes in the relationship between urban population density and service facilities is due to changing crowd behavior; however, the density of specific types of behavior is the real factor that affects the layout of urban public service facilities. The results show that mobile signaling data and land use data of service facilities are of great value for studying the spatiotemporal correlations between urban population density and service facilities.


2020 ◽  
Vol 12 (16) ◽  
pp. 2572 ◽  
Author(s):  
Guangyuan Zhang ◽  
Xiaoping Rui ◽  
Stefan Poslad ◽  
Xianfeng Song ◽  
Yonglei Fan ◽  
...  

Estimating and mapping population distributions dynamically at a city-wide spatial scale, including those covering suburban areas, has profound, practical, applications such as urban and transportation planning, public safety warning, disaster impact assessment and epidemiological modelling, which benefits governments, merchants and citizens. More recently, call detail record (CDR) of mobile phone data has been used to estimate human population distributions. However, there is a key challenge that the accuracy of such a method is difficult to validate because there is no ground truth data for the dynamic population density distribution in time scales such as hourly. In this study, we present a simple and accurate method to generate more finely grained temporal-spatial population density distributions based upon CDR data. We designed an experiment to test our method based upon the use of a deep convolutional generative adversarial network (DCGAN). In this experiment, the highest spatial resolution of every grid cell is 125125 square metre, while the temporal resolution can vary from minutes to hours with varying accuracy. To demonstrate our method, we present an application of how to map the estimated population density distribution dynamically for CDR big data from Beijing, choosing a half hour as the temporal resolution. Finally, in order to cross-check previous studies that claim the population distribution at nighttime (from 8 p.m. to 8 a.m. on the next day) mapped by Beijing census data are similar to the ground truth data, we estimated the baseline distribution, first, based upon records in CDRs. Second, we estimate a baseline distribution based upon Global Navigation Satellite System (GNSS) data. The results also show the Root Mean Square Error (RMSE) is about 5000 while the two baseline distributions mentioned above have an RMSE of over 13,500. Our estimation method provides a fast and simple process to map people’s actual density distributions at a more finely grained, i.e., hourly, temporal resolution.


2019 ◽  
Vol 7 (1) ◽  
pp. 77-84
Author(s):  
Jin Ki Eom ◽  
Kwang-Sub Lee ◽  
Ho-Chan Kwak ◽  
Ji Young Song ◽  
Myeong-Eon Seong

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ($$R_0$$ R 0 ) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.


2020 ◽  
Vol 7 (1) ◽  
pp. 29-48 ◽  
Author(s):  
Leonhard Menges

AbstractA standard account of privacy says that it is essentially a kind of control over personal information. Many privacy scholars have argued against this claim by relying on so-called threatened loss cases. In these cases, personal information about an agent is easily available to another person, but not accessed. Critics contend that control accounts have the implausible implication that the privacy of the relevant agent is diminished in threatened loss cases. Recently, threatened loss cases have become important because Edward Snowden’s revelation of how the NSA and GCHQ collected Internet and mobile phone data presents us with a gigantic, real-life threatened loss case. In this paper, I will defend the control account of privacy against the argument that is based on threatened loss cases. I will do so by developing a new version of the control account that implies that the agents’ privacy is not diminished in threatened loss cases.


Author(s):  
Yudong Guo ◽  
Fei Yang ◽  
Peter Jing Jin ◽  
Haode Liu ◽  
Sai Ma ◽  
...  

2021 ◽  
Author(s):  
Xintao Liu ◽  
Jianwei Huang ◽  
Jianhui Lai ◽  
Junwei Zhang ◽  
Ahmad M. Senousi ◽  
...  

Author(s):  
Zhenghong Peng ◽  
Guikai Bai ◽  
Hao Wu ◽  
Lingbo Liu ◽  
Yang Yu

Obtaining the time and space features of the travel of urban residents can facilitate urban traffic optimization and urban planning. As traditional methods often have limited sample coverage and lack timeliness, the application of big data such as mobile phone data in urban studies makes it possible to rapidly acquire the features of residents’ travel. However, few studies have attempted to use them to recognize the travel modes of residents. Based on mobile phone call detail records and the Web MapAPI, the present study proposes a method to recognize the travel mode of urban residents. The main processes include: (a) using DBSCAN clustering to analyze each user’s important location points and identify their main travel trajectories; (b) using an online map API to analyze user’s means of travel; (c) comparing the two to recognize the travel mode of residents. Applying this method in a GIS platform can further help obtain the traffic flow of various means, such as walking, driving, and public transit, on different roads during peak hours on weekdays. Results are cross-checked with other data sources and are proven effective. Besides recognizing travel modes of residents, the proposed method can also be applied for studies such as travel costs, housing–job balance, and road traffic pressure. The study acquires about 6 million residents’ travel modes, working place and residence information, and analyzes the means of travel and traffic flow in the commuting of 3 million residents using the proposed method. The findings not only provide new ideas for the collection and application of urban traffic information, but also provide data support for urban planning and traffic management.


Sign in / Sign up

Export Citation Format

Share Document