scholarly journals In vitroeffect of the adding of an exogenous enzyme blend (Natuzyme®) on rumen microbial fermentation and methane production of diets containing different NDF concentrations

2014 ◽  
pp. 3
Author(s):  
A. Faramarzi-Garmroodi ◽  
M. Danesh Mesgaran ◽  
E. Parand ◽  
A.R. Vakili
2020 ◽  
Author(s):  
Rafael Muñoz-Tamayo ◽  
Juana C. Chagas ◽  
Mohammad Ramin ◽  
Sophie J. Krizsan

AbstractBackgroundThe red macroalgae Asparagopsis taxiformis is a potent natural supplement for reducing methane production from cattle. A. taxiformis contains several anti-methanogenic compounds including bromoform that inhibits directly methanogenesis. The positive and adverse effects of A. taxiformis on the rumen microbiota are dose-dependent and operate in a dynamic fashion. It is therefore key to characterize the dynamic response of the rumen microbial fermentation for identifying optimal conditions on the use of A. taxiformis as a dietary supplement for methane mitigation. Accordingly, the objective of this work was to model the effect of A. taxiformis supplementation on the rumen microbial fermentation under in vitro conditions. We adapted a published mathematical model of rumen microbial fermentation to account for A. taxiformis supplementation. We modelled the impact of A. taxiformis on the fermentation and methane production by two mechanisms, namely (i) direct inhibition of the growth rate of methanogenesis by bromoform and (ii) hydrogen control on sugars utilization and on the flux distribution towards volatile fatty acids production. We calibrated our model using a multi-experiment estimation approach that integrated experimental data with six macroalgae supplementation levels from a published in vitro study assessing the dose-response impact of A. taxiformis on rumen fermentation.Resultsour model captured satisfactorily the effect of A. taxiformis on the dynamic profile of rumen microbial fermentation for the six supplementation levels of A. taxiformis with an average determination coefficient of 0.88 and an average coefficient of variation of the root mean squared error of 15.2% for acetate, butyrate, propionate, ammonia and methane.Conclusionsour results indicated the potential of our model as prediction tool for assessing the impact of additives such as seaweeds on the rumen microbial fermentation and methane production in vitro. Additional dynamic data on hydrogen and bromoform are required to validate our model structure and look for model structure improvements. We are working on model extensions to account for in vivo conditions. We expect this model development can be useful to help the design of sustainable nutritional strategies promoting healthy rumen function and low environmental footprint.


2021 ◽  
Vol 1 ◽  
pp. 1-None
Author(s):  
Rafael Muñoz-Tamayo ◽  
Juana C. Chagas ◽  
Mohammad Ramin ◽  
Sophie J. Krizsan

2015 ◽  
Vol 95 (3) ◽  
pp. 425-431
Author(s):  
Jacques B. Kouazounde ◽  
Joachim D. Gbenou ◽  
Maolong He ◽  
Túlio Jardim ◽  
Long Jin ◽  
...  

Kouazounde, J. B., Gbenou, J. D., He, M., Jardim, T., Jin, L., Wang, Y., Beauchemin, K. A. and McAllister, T. A. 2015. Effects of essential oils from African basil on fermentation of Andropogon gayanus grass in the Artificial Rumen (RUSITEC). Can. J. Anim. Sci. 95: 425–431. Essential oils (EO) from African basil (Ocimum gratissimum) have shown the potential to modify rumen microbial fermentation and reduce ruminal methane production from grass forages in in vitro batch cultures. However, it is not known whether the effects of EO on rumen microbial fermentation attenuate over time. The objective of this study was to examine the effects of African basil EO at 0 (control), 100, 200 and 400 mg L−1incubation medium on microbial fermentation and methane production in the Rumen Simulation Technique (RUSITEC) using Andropogon gayanus grass as a substrate. African basil EO quadratically affected (P<0.05) methane production gas production and the pH of fermenter liquid. Total volatile fatty acid (VFA) production was linearly decreased (P<0.05) by African basil EO along with a shift in VFA profile towards less propionate and more acetate and butyrate. African basil EO quadratically altered (P<0.05) apparent dry matter, neutral detergent fiber digestibility,15N incorporation into total microbial protein and the total production of microbial protein. This study confirms that EO from African basil quadratically affected methane emissions arising from the ruminal fermentation of A. gayanus grass mainly by reducing overall digestibility of the forage.


1978 ◽  
Vol 47 (2) ◽  
pp. 552-560 ◽  
Author(s):  
J. W. Spears ◽  
D. G. Ely ◽  
L. P. Bush

2015 ◽  
Vol 14 (4) ◽  
pp. 745-749
Author(s):  
Daisuke Tashima ◽  
Yoki Asano ◽  
Shigeki Tomomatsu ◽  
Yasuhiro Sugimoto

Sign in / Sign up

Export Citation Format

Share Document