scholarly journals Modelling the impact of the macroalgae Asparagopsis taxiformis on rumen microbial fermentation and methane production

2021 ◽  
Vol 1 ◽  
pp. 1-None
Author(s):  
Rafael Muñoz-Tamayo ◽  
Juana C. Chagas ◽  
Mohammad Ramin ◽  
Sophie J. Krizsan
2020 ◽  
Author(s):  
Rafael Muñoz-Tamayo ◽  
Juana C. Chagas ◽  
Mohammad Ramin ◽  
Sophie J. Krizsan

AbstractBackgroundThe red macroalgae Asparagopsis taxiformis is a potent natural supplement for reducing methane production from cattle. A. taxiformis contains several anti-methanogenic compounds including bromoform that inhibits directly methanogenesis. The positive and adverse effects of A. taxiformis on the rumen microbiota are dose-dependent and operate in a dynamic fashion. It is therefore key to characterize the dynamic response of the rumen microbial fermentation for identifying optimal conditions on the use of A. taxiformis as a dietary supplement for methane mitigation. Accordingly, the objective of this work was to model the effect of A. taxiformis supplementation on the rumen microbial fermentation under in vitro conditions. We adapted a published mathematical model of rumen microbial fermentation to account for A. taxiformis supplementation. We modelled the impact of A. taxiformis on the fermentation and methane production by two mechanisms, namely (i) direct inhibition of the growth rate of methanogenesis by bromoform and (ii) hydrogen control on sugars utilization and on the flux distribution towards volatile fatty acids production. We calibrated our model using a multi-experiment estimation approach that integrated experimental data with six macroalgae supplementation levels from a published in vitro study assessing the dose-response impact of A. taxiformis on rumen fermentation.Resultsour model captured satisfactorily the effect of A. taxiformis on the dynamic profile of rumen microbial fermentation for the six supplementation levels of A. taxiformis with an average determination coefficient of 0.88 and an average coefficient of variation of the root mean squared error of 15.2% for acetate, butyrate, propionate, ammonia and methane.Conclusionsour results indicated the potential of our model as prediction tool for assessing the impact of additives such as seaweeds on the rumen microbial fermentation and methane production in vitro. Additional dynamic data on hydrogen and bromoform are required to validate our model structure and look for model structure improvements. We are working on model extensions to account for in vivo conditions. We expect this model development can be useful to help the design of sustainable nutritional strategies promoting healthy rumen function and low environmental footprint.


Author(s):  
Tony Twamley ◽  
Mark Gaffney ◽  
Angela Feechan

AbstractFusarium graminearum and Zymoseptoria tritici cause economically important diseases of wheat. F. graminearum is one of the primary causal agents of Fusarium head blight (FHB) and Z. tritici is the causal agent of Septoria tritici blotch (STB). Alternative control methods are required in the face of fungicide resistance and EU legislation which seek to cut pesticide use by 2030. Both fungal pathogens have been described as either hemibiotrophs or necrotrophs. A microbial fermentation-based product (MFP) was previously demonstrated to control the biotrophic pathogen powdery mildew, on wheat. Here we investigated if MFP would be effective against the non-biotrophic fungal pathogens of wheat, F. graminearum and Z. tritici. We assessed the impact of MFP on fungal growth, disease control and also evaluated the individual constituent parts of MFP. Antifungal activity towards both pathogens was found in vitro but MFP only significantly decreased disease symptoms of FHB in planta. In addition, MFP was found to improve the grain number and weight, of uninfected and F. graminearum infected wheat heads.


2019 ◽  
Vol 16 (154) ◽  
pp. 20190129 ◽  
Author(s):  
Jing Chen ◽  
Matthew J. Wade ◽  
Jan Dolfing ◽  
Orkun S. Soyer

Methane-producing microbial communities are of ecological and biotechnological interest. Syntrophic interactions among sulfate reducers and aceto/hydrogenotrophic and obligate hydrogenotrophic methanogens form a key component of these communities, yet, the impact of these different syntrophic routes on methane production and their stability against sulfate availability are not well understood. Here, we construct model synthetic communities using a sulfate reducer and two types of methanogens representing different methanogenesis routes. We find that tri-cultures with both routes increase methane production by almost twofold compared to co-cultures and are stable in the absence of sulfate. With increasing sulfate, system stability and productivity decreases and does so faster in communities with aceto/hydrogenotrophic methanogens despite the continued presence of acetate. We show that this is due to a shift in the metabolism of these methanogens towards co-utilization of hydrogen with acetate. These findings indicate the important role of hydrogen dynamics in the stability and productivity of syntrophic communities.


2015 ◽  
Vol 28 (2) ◽  
pp. 1443-1452 ◽  
Author(s):  
Lorenna Machado ◽  
Marie Magnusson ◽  
Nicholas A. Paul ◽  
Robert Kinley ◽  
Rocky de Nys ◽  
...  

2011 ◽  
Vol 64 (4) ◽  
pp. 880-886 ◽  
Author(s):  
P. D. Jensen ◽  
H. Ge ◽  
D. J. Batstone

The biodegradability and bioavailability of hydrolysis-limited substrates under anaerobic (and aerobic) conditions can be represented by two key parameters – degradability (fd), or the percentage that can be effectively be destroyed during digestion, and first order hydrolysis coefficient (khyd), or the speed at which material breaks down. Biochemical methane potential (BMP) testing uses a batch test (in triplicate), and by fitting against a first order model, can fit both parameters in the same test. BMP testing is now being widely used for anaerobic process feasibility and design purposes, and standardisation efforts are ongoing. In this paper, we address a number of key issues relating to the test method and its analysis. This includes proposal of a new fitting and parameter estimation method, evaluation of the impact of inoculum to substrate ratio on fitted parameters, and comparison to performance in continuous systems. The new parameter estimation technique provides an estimate of parameter uncertainty and correlation, and is clearly more suitable than model transformation and linear regression. An inoculum volume ratio of at least 50% (2:1 on VS basis) was required on a cellulose substrate to use methane production as primary indicator, as found by comparing methane production and solubilisation of cellulose. Finally, on a typical material, waste activated sludge, the batch test was slightly conservative in terms of degradability and rate, indicating a bias in the BMP test. The test is a cost-effective and capable method to evaluate potential substrates, but it should be noted that it is generally conservative, especially if sub-optimal inoculum is used.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Breanna Michell Roque ◽  
Charles Garrett Brooke ◽  
Joshua Ladau ◽  
Tamsen Polley ◽  
Lyndsey Jean Marsh ◽  
...  

2011 ◽  
Vol 64 (8) ◽  
pp. 1614-1619 ◽  
Author(s):  
Gatut Sudarjanto ◽  
Keshab R. Sharma ◽  
Oriol Gutierrez ◽  
Zhiguo Yuan

The impact of brewery wastewater discharge on sulfide and methane production in a sewer was assessed. Experiments were carried out on laboratory scale sewer reactors consisting of both an experimental and a control reactor. The control reactor was intermittently fed with real fresh sewage while the experimental reactor was fed with a mixture of brewery and domestic wastewater at two different proportions (10 and 25% v/v). 10% v/v discharge of brewery wastewater increased the H2S and CH4 production rates in the sewer reactor by 40% and 30%, respectively. When the brewery wastewater fraction was increased to 25% v/v, the H2S production rate of the experimental reactor decreased to the level of the control reactor. In contrast, the CH4 production rate maintained at a level that was 30% higher than that in the control reactor. These results indicate that the discharge of brewery wastewater into sewers can give negative impacts in relation to odour and corrosion management of the systems and will increase the greenhouse gas emissions from sewers. The study also reveals that the impact of trade waste on the biological reactions in sewers is complex, and requires careful experimental assessment in each case.


2001 ◽  
Vol 2001 ◽  
pp. 157-157 ◽  
Author(s):  
A. R. Moss ◽  
C. J. Newbold ◽  
D.I. Givens

Methane production represents an important sink for hydrogen within the rumen Beever (1993) suggested that the partitioning of fermentable dry matter (DM) between microbial synthesis and fermentation products would alter the pattern of hydrogen production and hence methanogenesis. This hypothesis was investigated in vitro using a range of diets varying in carbohydrate source (Moss et al., 2000). Methane production (moles) increased as the proportion of DM fermented to short chain fatty acids (SCFA) increased and this was related to decreasing water soluble carbohydrate (WSC) to cell wall (NDF) ratio of the diet. The objectives of the current study was to design diets with a range of WSC:NDF ratios and to measure the impact on hexose partitioning and methane production in sheep in vivo.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Thales H. F. Costa ◽  
Vincent G. H. Eijsink ◽  
Svein Jarle Horn

Abstract Background The recent discovery that LPMOs can work under anaerobic conditions when supplied with low amounts H2O2 opens the possibility of using LPMOs as enzyme aids in biogas reactors to increase methane yields from lignocellulosic materials. We have explored this possibility by studying anaerobic digestion of various lignocellulosic materials: Avicel, milled spruce and birch wood, and a lignin-rich hydrolysis residue from steam-exploded birch. The digestions were added LPMOs and various cellulolytic enzyme cocktails and were carried out with or without addition of H2O2. Results In several cases, enzyme addition had a beneficial effect on methane production, which was partly due to components present in the enzyme preparations. It was possible to detect LPMO activity during the initial phases of the anaerobic digestions of Avicel, and in some cases LPMO activity could be correlated with improved methane production from lignocellulosic materials. However, a positive effect on methane production was only seen when LPMOs were added together with cellulases, and never upon addition of LPMOs only. Generally, the experimental outcomes showed substrate-dependent variations in process efficiency and the importance of LPMOs and added H2O2. These differences could relate to variations in the type and content of lignin, which again will affect the activity of the LPMO, the fate of the added H2O2 and the generation of potentially damaging reactive-oxygen species. The observed effects showed that the interplay between cellulases and LPMOs is important for the overall efficiency of the process. Conclusion This study shows that it may be possible to harness the power of LPMOs in anaerobic digestion processes and improve biogas production, but also highlight the complexity of the reaction systems at hand. One complicating factor was that the enzymes themselves and other organic components in the enzyme preparations acted as substrates for biogas production, meaning that good control reactions were essential to detect effects caused by enzyme activity. As also observed during regular aerobic enzymatic digestion of lignocellulosic biomass, the type and contents of lignin in the substrates likely plays a major role in determining the impact of LPMOs and of cellulolytic enzymes in general. More work is needed to unravel the interplay between LPMOs, O2, H2O2, and the multitude of redox-active components found in anaerobic bioreactors degrading lignocellulosic substrates.


Sign in / Sign up

Export Citation Format

Share Document