Bacterial degradation of ortho-dimethyl phthalate ester and adaptation of escherichia coli K12 to carbon-limited growth

2004 ◽  
Author(s):  
Yingying Wang
2005 ◽  
Vol 52 (8) ◽  
pp. 241-248 ◽  
Author(s):  
J.-D. Gu ◽  
J. Li ◽  
Y. Wang

Degradation of dimethyl isophthalate (DMI) and dimethyl phthalate ester (DMPE) was investigated using microorganisms isolated from mangrove sediment of Hong Kong Mai Po Nature Reserve. One enrichment culture was capable of utilizing DMI as the sole source of carbon and energy, but none of the bacteria in the enrichment culture was capable of degrading DMI alone. In co-culture of two bacteria, degradation was observed proceeding through monomethyl isophthalate (MMI) ester and isophthalic acid (IPA) before the aromatic ring opening. Using DMI as the sole carbon and energy source, Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr degraded DMI through the biochemical cooperation. The initial hydrolytic reaction of the ester bond was by K. oxytoca Sc and the next step of transformation was by M. mesophilicum Sr, and IPA was degraded by both of them. In another investigation, a novel bacterium, strain MPsc, was isolated for degradation of dimethyl phthalate ester (DMPE) also from the mangrove sediment. On the basis of phenotypic, biochemical and 16S rDNA gene sequence analyses, the strain MPsc should be considered as a new bacterium at the genus level (8% differences). This strain, together with a Rhodococcus zopfii isolated from the same mangrove sediment, was able to degrade DMPE aerobically. The consortium consisting of the two species degraded 450mg/l DMPE within 3 days as the sole source of carbon and energy, but none of the individual species alone was able to transform DMPE. Furthermore, the biochemical degradation pathway proceeded through monomethyl phthalate (MMP), phthalic acid (PA) and then protocatechuate before aromatic ring cleavage. Our results suggest that degradation of complex organic compounds including DMI and DMPE may be carried out by several members of microorganisms working together in the natural environments.


Author(s):  
Fernanda L. Souza ◽  
José M. Aquino ◽  
Douglas W. Miwa ◽  
Manuel A. Rodrigo ◽  
Artur J. Motheo

1975 ◽  
Vol 152 (3) ◽  
pp. 537-546 ◽  
Author(s):  
R K Poole ◽  
B A Haddock

Growth of Escherichia coli K12 in a chemostat was limited by sulphate concentrations lower than 300 muM. The synthesis of extracellular polysaccharide and a change in morphology accompanied sulphate-limited growth. Growth yields with respect to the amount of glycerol or oxygen consumed were sixfold and twofold lower respectively under these conditions than when growth was limited by glycerol. Sulphate-limited cells lacked the proton-translocating oxidoreduction segment of the electron-transport chain between NADH and the cytochromes, and particles prepared from these cells lacked the energy-dependent reduction of NAD+ by succinate, DL-α-glycerophosphate or D-lactate, suggesting the loss of site-I phosphorylation. Glycerol-limited cells contained cytochrome b556, b562 and o, ubiquinone and low concentrations of menaquinone. Sulphate limitation resulted in the additional synthesis of cytochromes d, a1, b558 and c550; the amount of ubiquinone was decreased and menaquinone was barely detectable. Non-haem iron and acid-labile sulphide concentrations were twofold lower in electron-transport particles prepared from sulphate-limited cells. Recovery of site-I phosphorylation could not be demonstrated after incubating sulphate-limited cells with or without glycerol, in either the absence or presence of added sulphate. The loss of site-I phosphorylation in sulphate-limited cells is discussed with reference to the accompanying alterations in cytochrome composition of such cells. Schemes are proposed for the functional organization of the respiratory chains of E. coli grown under conditions of glycerol or sulphate limitation.


2019 ◽  
Vol 180 ◽  
pp. 208-214 ◽  
Author(s):  
Zhigang Wang ◽  
Xiaohui Zhu ◽  
Yunpeng Su ◽  
Weihui Xu ◽  
Hong Liu ◽  
...  

Chemosphere ◽  
2014 ◽  
Vol 109 ◽  
pp. 187-194 ◽  
Author(s):  
Fernanda L. Souza ◽  
José M. Aquino ◽  
Kallyni Irikura ◽  
Douglas W. Miwa ◽  
Manuel A. Rodrigo ◽  
...  

2014 ◽  
Vol 2 (2) ◽  
pp. 811-818 ◽  
Author(s):  
Fernanda L. Souza ◽  
José M. Aquino ◽  
Douglas W. Miwa ◽  
Manuel A. Rodrigo ◽  
Artur J. Motheo

Sign in / Sign up

Export Citation Format

Share Document