Microbial Degradation of the Endocrine-Disrupting Chemicals Phthalic Acid and Dimethyl Phthalate Ester Under Aerobic Conditions

2003 ◽  
Vol 71 (4) ◽  
pp. 810-818 ◽  
Author(s):  
Y. Wang ◽  
Y. Fan ◽  
J.-D. Gu
2007 ◽  
Vol 53 (6) ◽  
pp. 740-744 ◽  
Author(s):  
Yutaka Kido ◽  
Teruo Tanaka ◽  
Kazunori Yamada ◽  
Hideo Hachiyanagi ◽  
Hiroshige Baba ◽  
...  

2005 ◽  
Vol 52 (8) ◽  
pp. 241-248 ◽  
Author(s):  
J.-D. Gu ◽  
J. Li ◽  
Y. Wang

Degradation of dimethyl isophthalate (DMI) and dimethyl phthalate ester (DMPE) was investigated using microorganisms isolated from mangrove sediment of Hong Kong Mai Po Nature Reserve. One enrichment culture was capable of utilizing DMI as the sole source of carbon and energy, but none of the bacteria in the enrichment culture was capable of degrading DMI alone. In co-culture of two bacteria, degradation was observed proceeding through monomethyl isophthalate (MMI) ester and isophthalic acid (IPA) before the aromatic ring opening. Using DMI as the sole carbon and energy source, Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr degraded DMI through the biochemical cooperation. The initial hydrolytic reaction of the ester bond was by K. oxytoca Sc and the next step of transformation was by M. mesophilicum Sr, and IPA was degraded by both of them. In another investigation, a novel bacterium, strain MPsc, was isolated for degradation of dimethyl phthalate ester (DMPE) also from the mangrove sediment. On the basis of phenotypic, biochemical and 16S rDNA gene sequence analyses, the strain MPsc should be considered as a new bacterium at the genus level (8% differences). This strain, together with a Rhodococcus zopfii isolated from the same mangrove sediment, was able to degrade DMPE aerobically. The consortium consisting of the two species degraded 450mg/l DMPE within 3 days as the sole source of carbon and energy, but none of the individual species alone was able to transform DMPE. Furthermore, the biochemical degradation pathway proceeded through monomethyl phthalate (MMP), phthalic acid (PA) and then protocatechuate before aromatic ring cleavage. Our results suggest that degradation of complex organic compounds including DMI and DMPE may be carried out by several members of microorganisms working together in the natural environments.


Author(s):  
Fernanda L. Souza ◽  
José M. Aquino ◽  
Douglas W. Miwa ◽  
Manuel A. Rodrigo ◽  
Artur J. Motheo

2000 ◽  
Vol 14 (3) ◽  
pp. 421-428 ◽  
Author(s):  
Hisashi Masuyama ◽  
Yuji Hiramatsu ◽  
Mamoru Kunitomi ◽  
Takafumi Kudo ◽  
Paul N. MacDonald

Abstract Recently, Pregnane X receptor (PXR), a new member of the nuclear receptor superfamily, was shown to mediate the effects of several steroid hormones, such as progesterone, glucocorticoid, pregnenolone, and xenobiotics on cytochrome P450 3A genes (CYP3A) through the specific DNA sequence for CYP3A, suggesting that PXR may play a role in steroid hormone metabolism. In this paper, we demonstrated that phthalic acid and nonylphenol, endocrine-disrupting chemicals (EDCs), stimulated PXR-mediated transcription at concentrations comparable to those at which they activate estrogen receptor-mediated transcription using a transient reporter gene expression assay in COS-7 cells. However, bisphenol A, another EDC, had no effect on PXR-mediated transcription, although this chemical significantly enhanced ER-mediated transcription. In the yeast two-hybrid protein interaction assay, PXR interacted with two nuclear receptor coactivator proteins, steroid hormone receptor coactivator-1 and receptor interacting protein 140, in the presence of phthalic acid or nonylphenol. Thus, EDC-occupied PXR may regulate its specific gene expression through the receptor-coactivator interaction. In contrast, these EDCs had no effect on the interaction between PXR and suppressor for gal 1, a component of proteasome. Finally, the expression of CYP3A1 mRNA in the liver of rats exposed to phthalic acid or nonylphenol markedly increased compared with that in rats treated with estradiol, bisphenol A, or ethanol as assessed by competitive RT-PCR. These data suggest that EDCs may affect endocrine functions by altering steroid hormone metabolism through PXR.


Chemosphere ◽  
2014 ◽  
Vol 109 ◽  
pp. 187-194 ◽  
Author(s):  
Fernanda L. Souza ◽  
José M. Aquino ◽  
Kallyni Irikura ◽  
Douglas W. Miwa ◽  
Manuel A. Rodrigo ◽  
...  

2014 ◽  
Vol 2 (2) ◽  
pp. 811-818 ◽  
Author(s):  
Fernanda L. Souza ◽  
José M. Aquino ◽  
Douglas W. Miwa ◽  
Manuel A. Rodrigo ◽  
Artur J. Motheo

2017 ◽  
pp. 106
Author(s):  
Olanrewaju Olujimi ◽  
Olalekan Fatoki ◽  
James Odendaal

Continuous disposal of endocrine-disrupting chemicals (EDCs) into the environment can lead to serious human health problems and can affect aquatic organisms. A number of investigations suggested that final effluents of wastewater treatment plants are the main source of EDCs into the aquatic environment. A developed analytical method was used for the analysis of priority phenols as tert-butyl derivatives and phthalates in wastewater. Qualitative and quantitative analyses were performed by gas chromatography – mass spectrometry (GC–MS) using DB-5MS column. These compounds were evaluated using solid-phase extraction for raw and treated wastewater from a wastewater treatment plant. Concentrations of analytes ranged from below limit of detection to 570μgL-1 for phenols and below limit of quantification to 796μgL-1 for phthalates. Diethyl phthalate was the most prominent phthalate ester with pentachlorophenol for the corresponding phenol. The average percent removal varied from 52.63 to 100%. The result clearly shows that environmental endocrine disrupting chemicals are not completely removed from treated wastewater.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bhuvaneswari Meganathan ◽  
Thirumalaisamy Rathinavel ◽  
Suriyaprabha Rangaraj

Abstract Modernization and modern ways of living demands more improved products from pharmaceuticals, cosmetics, and food processing industries. Moreover, industries like pesticides, fertilizers, dyeing, paints, detergent etc., also needs improvised products as per demand. As the new product emerges, the pollutants from these industries also constitute new type of danger to the environment and serious health risks to the living organisms. These emerging contaminants (ECs) are from different category of sources such as personal care products (PCPs), pharmaceuticals (Phcs), endocrine disrupting chemicals (EDCs), etc. These ECs can easily escape from the conventional water treatment and eventually get discharged in to the surface water and thus enters in to the ground water, soil, sediments, and also into the oceans. When these contaminants emerge we also require progress in tremendous process for preventing these hazardous chemicals by effective removal and treatment. For the past 50 years, both developed and developing countries are working on this treatment process and found that Microbial degradation and bioremediation are very useful for effective treatment to prevent their emissions. This treatment can be designed for any sort of ECs since the microbial members are so versatile to redesign their metabolic pathways when subject to exposure. However, implementing bioremediation is not alone efficient to degrade ECs and hence, combination of bioremediation, nanotechnology and physical treatment method will also provide sustainable, potent and fast degradation process. In this Book Chapter, we discuss in detail about the ECs, sources of microbial degradation process and its usefulness in the bioremediation of these ECs.


Sign in / Sign up

Export Citation Format

Share Document