Time-dependent behaviour of concrete structures with special reference to podium and frame structures

2007 ◽  
Author(s):  
Chi-hong Liu
2019 ◽  
Vol 14 (2) ◽  
pp. 227-248
Author(s):  
Yongbao Wang ◽  
Renda Zhao ◽  
Yi Jia ◽  
Ping Liao

This paper continues the previous study on clarifying the time-dependent behaviour of Beipanjiang Bridge ‒ a reinforced concrete arch bridge with concrete-filled steel tubular stiffened skeleton. The obtained prediction models and the Finite Element Models were used to simulate the long-term behaviour and stress redistribution of the concrete arch bridge. Three-dimensional beam elements simulated the stiffened skeleton and surrounding concrete. Then, a parameters study was carried out to analyse the time-dependent behaviour of the arch bridge influenced by different concrete creep and shrinkage models. The simulation results demonstrate that concrete creep and shrinkage have a significant influence on the time-dependent behaviour of the concrete arch bridge. After the bridge completion, the Comite Euro-International du Beton mean deviation of displacements obtained by 1990 CEBFIP Model Code: Design Code model and fib Model Code for Concrete Structures 2010 model are 3.4%, 31.9% larger than the results predicted by the modified fib Model Code for Concrete Structures 2010 model. The stresses between the steel and the concrete redistribute with time because of the concrete long-term effect. The steel will yield if the fib Model Code for Concrete Structures 2010 model is used in the analysis. The stresses in a different part of the surrounding concrete are non-uniformly distributed.


2018 ◽  
Vol 7 (3) ◽  
pp. 1826
Author(s):  
Heyam H. Shaalan ◽  
Mohd Ashraf Mohamad Ismail ◽  
Romziah Azit

Shotcrete is ordinary concrete applied to the surface under high pressure. It demonstrates a highly time-dependent behaviour after few hours of application. Traditional approaches assume a simple linear elastic behaviour using a hypothetical young modulus to investigate the time-dependency and creep effects. In this paper, a new constitutive model of shotcrete is applied to evaluate the time-dependent behaviour of a TBM tunnel lining and investigate the parameters that can influence this behaviour. The Shotcrete model is based on the framework of Elasto-plasticity and designed to model shotcrete linings more realistically. The basic data of Pahang-Selangor Raw Water Transfer Project is used for the analysis study. An attempt is made to investigate the influence of some input parameters of the shotcrete model on the time-dependent behaviour of the shotcrete lining. These parameters include the time-dependent stiffness/strength parameters, creep and shrinkage parameters and steel fibre parameters. The variation in shotcrete strength classes causes a noticeable influence on the development of shotcrete compressive strength with time, particularly during the first days of application. The creep and shrinkage strain cause a considerable reduction in the development of the shotcrete stress with time. The impact of steel fibre content is determined, and the result indicated that the development of plain shotcrete stresses with time is lower than that of the reinforced shotcrete. In addition, a comparison study is performed to analyse the tunnel lining behaviour using both shotcrete model and an elastic analysis. Significant differences in shotcrete lining stresses are achieved when using the elastic analysis while the shotcrete model results in a reasonable result that can be used for the design requirements. 


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Rajeswara R. Resapu ◽  
Roger D. Bradshaw

Abstract In-vitro mechanical indentation experimentation is performed on bulk liver tissue of lamb to characterize its nonlinear material behaviour. The material response is characterized by a visco-hyperelastic material model by the use of 2-dimensional inverse finite element (FE) analysis. The time-dependent behaviour is characterized by the viscoelastic model represented by a 4-parameter Prony series, whereas the large deformations are modelled using the hyperelastic Neo-Hookean model. The shear response described by the initial and final shear moduli and the corresponding Prony series parameters are optimized using ANSYS with the Root Mean Square (RMS) error being the objective function. Optimized material properties are validated using experimental results obtained under different loading histories. To study the efficacy of a 2D model, a three dimensional (3D) model of the specimen is developed using Micro-CT of the specimen. The initial elastic modulus of the lamb liver obtained was found to 13.5 kPa for 5% indentation depth at a loading rate of 1 mm/sec for 1-cycle. These properties are able to predict the response at 8.33% depth and a loading rate of 5 mm/sec at multiple cycles with reasonable accuracy. Article highlights The visco-hyperelastic model accurately models the large displacement as well as the time-dependent behaviour of the bulk liver tissue. Mapped meshing of the 3D FE model saves computational time and captures localized displacement in an accurate manner. The 2D axisymmetric model while predicting the force response of the bulk tissue, cannot predict the localized deformations.


Sign in / Sign up

Export Citation Format

Share Document