scholarly journals Prediction Method for Quasi-Static Component Response of High-Rise Seismic Isolated Building under Fluctuating Wind Force

2016 ◽  
Vol 41 (2) ◽  
pp. 41-47 ◽  
Author(s):  
Ryo OGAWA ◽  
Keisuke YOSHIE ◽  
Daiki SATO ◽  
Toshiaki SATO ◽  
Haruyuki KITAMURA
2012 ◽  
Vol 18 (38) ◽  
pp. 79-84
Author(s):  
Hiroyuki HIRAI ◽  
Keisuke YOSHIE ◽  
Daiki SATO ◽  
Yuya SUZUKI ◽  
Haruyuki KITAMURA

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianda Yu ◽  
Zhibo Duan ◽  
Xiangqi Zhang ◽  
Jian Peng

Based on the vibration reduction mechanism of compound damping cables, this study focuses on the wind-induced vibration control of high-rise structures with additional mass at the top. The differential equation of motion of the system under the action of the composite damping cable is established, and the analytical solution of the additional damping ratio of the structure is deduced, which is verified by model tests. The vibration response of the structure under the action of simple harmonic vortex excitation and randomly fluctuating wind loads is studied, and the effect of different viscous coefficients of the dampers in the composite damping cable and different installation heights of the damping cable on the vibration control is analyzed. The results show that a small vortex excitation force will cause large vibrations of low-dampened towering structures, and the structure will undergo buffeting under the action of wind load pulse force. The damping cable can greatly reduce the amplitude of structural vibration. The root means square of structural vibration displacement varies with damping. The viscosity coefficient of the device and the installation height of the main cable of the damping cable are greatly reduced.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4032 ◽  
Author(s):  
Park ◽  
Kim ◽  
Jung

As the importance of sustainable energy increases, wind power generation systems utilizing wind energy around high-rise buildings are being developed. However, in existing wind turbine systems, it is necessary to solve noise, vibration problems, and structural issues for the installation of large-sized systems. In addition, small wind turbine systems can be installed only in limited areas such as roofs and corners, because their efficiency is limited to high and stable wind speed. For this reason, the distribution of fluctuating wind pressure around high-rise buildings was analyzed, and its feasibility as an energy source was evaluated, reflecting that fluctuating wind pressure can be used in vibration-based energy-harvesters. To achieve this, firstly, experimental conditions and theories were established to check the characteristic of wind pressure around high-rise buildings. The experiment was divided into the environment without surrounding buildings and the urban environment. Next, the pressure distribution around high-rise buildings and the quantitative results obtained from the experiment were determined. Finally, based on the results obtained from the experiments, the feasibility of fluctuating wind pressure as an energy-harvesting source was analyzed. From this study, it was found that fluctuating wind pressure can be used as a new energy source at new locations of high-rise buildings that were not utilized previously.


Author(s):  
A. Abraham ◽  
S. Chitra Ganapathi ◽  
G. Ramesh Babu ◽  
S. Saikumar ◽  
K. R. S. Harsha Kumar ◽  
...  

2014 ◽  
Vol 1025-1026 ◽  
pp. 922-925
Author(s):  
Yong Chul Kim ◽  
Sung Won Yoon

In evaluating wind load effects on large-scale structures, correlations in the frequency domain (i.e., coherences) and power spectra of fluctuating wind speed should be evaluated in advance. Most existing formulas for coherence are expressed as exponential functions based on field measurement data for ease of mathematical treatment. However, these simple mathematical expressions have many limitations. In the present study, after examining the existing coherence formulas, a semi-theoretical formula was proposed, and the corresponding along-wind force power spectrum of a tall building with a square cross-section was numerically calculated. A comparison showed that both the coherence and along-wind power spectrum were in good agreement with those of actual wind tunnel data.


2021 ◽  
Author(s):  
Mehmet Köhserli ◽  
Péter L. Várkonyi

<p>Cities are organized around various underlying networks but building structures do not follow this trend. The isolation of structural systems causes difficulties in the case of tall structures. We investigate the possibility of improving structural behaviour by organizing buildings into urban-scale structural networks, with focus on vortex-induced vibration. We review our recent work, in which randomly generated collections of high-rise buildings were examined by numerical simulation using a conceptual model of the network composed of springs and point masses. Here we examine the behaviour of a realistic collection of buildings, generated by considering the existing building stock and urban fabric of Midtown Manhattan. The new simulation results suggest that connections among the buildings would enable the application of significantly softer bracing systems. This finding suggests that urban-scale structural networks is a promising direction of urban development.</p>


Sign in / Sign up

Export Citation Format

Share Document