small vortex
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianda Yu ◽  
Zhibo Duan ◽  
Xiangqi Zhang ◽  
Jian Peng

Based on the vibration reduction mechanism of compound damping cables, this study focuses on the wind-induced vibration control of high-rise structures with additional mass at the top. The differential equation of motion of the system under the action of the composite damping cable is established, and the analytical solution of the additional damping ratio of the structure is deduced, which is verified by model tests. The vibration response of the structure under the action of simple harmonic vortex excitation and randomly fluctuating wind loads is studied, and the effect of different viscous coefficients of the dampers in the composite damping cable and different installation heights of the damping cable on the vibration control is analyzed. The results show that a small vortex excitation force will cause large vibrations of low-dampened towering structures, and the structure will undergo buffeting under the action of wind load pulse force. The damping cable can greatly reduce the amplitude of structural vibration. The root means square of structural vibration displacement varies with damping. The viscosity coefficient of the device and the installation height of the main cable of the damping cable are greatly reduced.


2020 ◽  
Vol 102 (10) ◽  
Author(s):  
I. Maccari ◽  
N. Defenu ◽  
L. Benfatto ◽  
C. Castellani ◽  
T. Enss

2020 ◽  
Vol 201 (1-2) ◽  
pp. 11-17
Author(s):  
P. J. Green ◽  
M. J. Grant ◽  
J. W. Nevin ◽  
P. M. Walmsley ◽  
A. I. Golov

Abstract The vortex filament model is used to investigate the interaction of a quantized vortex ring with a straight vortex line and also the interaction of two solitons traveling in opposite directions along a vortex. When a ring reconnects with a line, we find that a likely outcome is the formation of a loop soliton. When they collide, loop solitons reconnect as they overlap each other producing either one or two vortex rings. These simulations are relevant for experiments on quantum turbulence in the zero temperature limit where small vortex rings are expected to be numerous. It seems that loop solitons might also commonly occur on vortex lines as they act as transient states between the absorption of a vortex ring before another ring is emitted when the soliton is involved in a reconnection.


2018 ◽  
Vol 3 (1) ◽  
pp. 345-352 ◽  
Author(s):  
David H. Wood

Abstract. The periodic, helical vortex wakes of wind turbines, propellers, and helicopters are often approximated using straight vortex segments which cannot reproduce the binormal velocity associated with the local curvature. This leads to the need for the first curvature correction, which is well known and understood. It is less well known that under some circumstances, the binormal velocity determined from straight segments needs a second correction when the periodicity returns the vortex to the proximity of the point at which the velocity is required. This paper analyzes the second correction by modelling the helical far wake of a wind turbine as an infinite row of equispaced vortex rings of constant radius and circulation. The ring spacing is proportional to the helix pitch. The second correction is required at small vortex pitch, which is typical of the operating conditions of large modern turbines. Then the velocity induced by the periodic wake can greatly exceed the local curvature contribution. The second correction is quadratic in the inverse of the number of segments per ring and linear in the inverse spacing. An approximate expression is developed for the second correction and shown to reduce the errors by an order of magnitude.


2018 ◽  
Author(s):  
David H. Wood

Abstract. The periodic, helical vortex wakes of wind turbines, propellers, and helicopters are often approximated using straight vortex segments which cannot reproduce the binormal velocity associated with the local curvature. This leads to the need for the first curvature correction which is well known and understood. It is less well known that under some circumstances, the binormal velocity determined from straight segments needs a second correction when the periodicity returns the vortex to the proximity of the point at which the velocity is required. This paper analyzes the second correction by modeling the helical far-wake of a wind turbine as an infinite row of equispaced vortex rings of constant radius and circulation. The ring spacing is proportional to the helix pitch. The second correction is required at small vortex pitch, which is typical of the operating conditions of modern large turbines. Then the velocity induced by the periodic wake can greatly exceed the local curvature contribution. The second correction is quadratic in the inverse of the number of segments per ring and linear in the inverse spacing. An approximate expression is developed for the second correction and shown to reduce the errors by an order of magnitude.


2017 ◽  
Vol 819 ◽  
pp. 401-434 ◽  
Author(s):  
Yongping Chen ◽  
Zilong Deng

We develop a phase-field multiphase lattice Boltzmann model to systematically investigate the dynamic behaviour of a droplet passing through a microfluidic T-junction, especially focusing on the non-breakup of the droplet. Detailed information on the breakup and non-breakup is presented, together with the quantitative evolutions of driving and resistance forces as well as the droplet deformation characteristics involved. Through comparisons between cases of non-breakup and breakup, we find that the appearance of tunnels (the lubricating film between droplet and channel walls) provides a precondition for the final non-breakup of droplets, which slows down the droplet deformation rate and even induces non-breakup. The vortex flow formed inside droplets plays an important role in determining whether they break up or not. In particular, when the strength of vortex flow exceeds a critical value, a droplet can no longer break up. Additionally, more effort has been devoted to investigating the effects of viscosity ratio between disperse and continuous phases and width ratio between branch and main channels on droplet dynamic behaviours. It is found that a large droplet viscosity results in a small velocity gradient in a droplet, which restricts vortex generation and thus produces lower deformation resistance. Consequently, it is easier to break up a droplet with larger viscosity. Our work also reveals that a droplet in small branch channels tends to obstruct the channels and have small vortex flows, which induces easier breakup too. Eventually, several phase diagrams for droplet flow patterns are provided, and the corresponding power-law correlations ($l_{0}/w=\unicode[STIX]{x1D6FD}Ca^{b}$, where $l_{0}/w$ is dimensionless initial droplet length and $Ca$ is capillary number) are fitted to describe the boundaries between different flow patterns.


2017 ◽  
Vol 21 (3) ◽  
pp. 692-717 ◽  
Author(s):  
Junjie Ren ◽  
Ping Guo

AbstractThe lattice Boltzmann method is employed to simulate the steady flow in a two-dimensional lid-driven semi-elliptical cavity. Reynolds number (Re) and vertical-to-horizontal semi-axis ratio (D) are in the range of 500-5000 and 0.1-4, respectively. The effects of Re and D on the vortex structure and pressure field are investigated, and the evolutionary features of the vortex structure with Re and D are analyzed in detail. Simulation results show that the vortex structure and its evolutionary features significantly depend on Re and D. The steady flow is characterized by one vortex in the semi-elliptical cavity when both Re and D are small. As Re increases, the appearance of the vortex structure becomes more complex. When D is less than 1, increasing D makes the large vortexes more round, and the evolution of the vortexes with D becomes more complex with increasing Re. When D is greater than 1, the steady flow consists of a series of large vortexes which superimpose on each other. As Re and D increase, the number of the large vortexes increases. Additionally, a small vortex in the upper-left corner of the semi-elliptical cavity appears at a large Re and its size increases slowly as Re increases. The highest pressures appear in the upper-right corner and the pressure changes drastically in the upper-right region of the cavity. The total pressure differences in the semi-elliptical cavity with a fixed D decrease with increasing Re. In the region of themain vortex, the pressure contours nearly coincide with the streamlines, especially for the cavity flow with a large Re.


2011 ◽  
Vol 90-93 ◽  
pp. 851-856
Author(s):  
Xiao Qing Du ◽  
Yan Zhao

Large eddy simulation (LES) is utilized to simulate flow around a circular cylinder with/without an upper rivulet at Reynolds number 70000. Mean and fluctuating wind pressure coefficients on the artificial upper rivulet and the circular cylinder are obtained. The flow field and the vorticity magnitude in the wake flow zone of the cable model with rivulet at different positions were also investigated. It is found that a small vortex occur near the back of rivulet, when it locates in some particular positions, that might be the reason aerodynamic forces changing dramatically. These results lay foundation for the research on regulation about the influence of rivulet size and shape on cable aerodynamic in future.


Sign in / Sign up

Export Citation Format

Share Document