ALTITUDINAL ZONATION OF VEGETATION COVER ON THE TILICHINSKIYE GORY MOUNTAIN RANGE (OLYUTORSKY DISTRICT OF KAMCHATSKY KRAI)

2021 ◽  
Author(s):  
V.Yu. Neshataeva ◽  
K.I. Skvortsov ◽  
V.Yu. Neshataev ◽  
V.V. Yakubov ◽  
V.E. Kirichenko
2021 ◽  
Vol 10 (2) ◽  
pp. 78-85
Author(s):  
Andrey Mikhailovich Samdan

This paper studies the vegetation cover organization of the Aryskannyg cluster of the state natural biosphere reserve Ubsunurskaya Kotlovina. In the course of the work 2 ecological and phytocoenotic profiles were laid and 2 large-scale mapping was carried out. The steppe type of vegetation is mainly represented by different variants of real turf-and-slag steppes: shrubby, petrophytic and dry. The original steppe communities are the resurrection ( Selaginella sanguinolenta ) and eastern feather grass coenoses ( Stipa orientalis ). An independent high-altitude belt forms mountain expositional forest-steppes. The forest component consists of grass and rhytidium larch forests, and the daurian rhododendron occupies an active position in the undergrowth. The steppe component consists of thickened mixed-grass-stop-grass meadow, as well as mixed-grass-fine-grained-slag petrophytic steppes. The mountain-taiga belt is represented by communities of larch and cedar formations. The high-altitude belt is dominated by yernik ( Betula rotundifolia ) and dryad ( Dryas oxyodontha ) mountain-tundra communities. It is revealed that the territory has a complex vegetation cover, which was formed in the conditions of mountain relief and sharply continental climate, the diversity of plant communities (from dry-steppe to mountain-tundra) is due to the length of the cluster territory in three high-altitude zones and the complex influence of latitudinal and local abiotic factors. The leading factors in the distribution of vegetation are the exposure of the slopes and the absolute height of the terrain.


2012 ◽  
Vol 9 (6) ◽  
pp. 7035-7084 ◽  
Author(s):  
S. Ye ◽  
M. A. Yaeger ◽  
E. Coopersmith ◽  
L. Cheng ◽  
M. Sivapalan

Abstract. The goal of this paper is to explore the process controls underpinning regional patterns of variations of runoff regime behavior, i.e., the mean seasonal variation of runoff within the year, across the continental United States. The ultimate motivation is to use the resulting process understanding to generate insights into the physical controls of Flow Duration Curves, in view of the close connection between these two alternative signatures of runoff variability. To achieve these aims a top-down modeling approach is adopted; we start with a simple two-stage bucket model, which is systematically enhanced through addition of new processes on the basis of model performance assessment in relation to observations, using rainfall-runoff data from 197 United States catchments belonging to the MOPEX dataset. Exploration of dominant processes and the determination of required model complexity are carried out through model-based sensitivity analyses, guided by a performance metric. Results indicated systematic regional trends in dominant processes: snowmelt was a key process control in cold mountainous catchments in the north and north-west, whereas snowmelt and vegetation cover dynamics were key controls in the north-east; seasonal vegetation cover dynamics (phenology and interception) were important along the Appalachian mountain range in the east. A simple two-bucket model (with no other additions) was found to be adequate in warm humid catchments along the west coast and in the south-east, with both regions exhibiting strong seasonality, whereas much more complex models are needed in the dry south and south-west. Agricultural catchments in the mid-west were found to be difficult to predict with the use of simple lumped models, due to the strong influence of human activities. Overall, these process controls arose from general east-west (seasonality) and north-south (aridity, temperature) trends in climate (with some exceptions), compounded by complex dynamics of vegetation cover and to a less extent by landscape factors (soils, geology and topography).


2017 ◽  
pp. 31
Author(s):  
Juan Martínez-Cruz ◽  
Oswaldo Téllez-Valdés

The Santa Rosa range presently contains one of the few moderately preserved vegetation remnants in the state of Guanajuato. Unfortunately, this state has been characterized by the degradation of its vegetation cover since colonial times. In this floristic study we recorded 21 infraspecific taxa, 496 species, 273 genera and 93 families of vascular plants. Among these, Asteraceae comprises the largest number of species, followed by Poaceae and Lamiaceae, respectively. Three species cited in the Mexican Norm of Endangered Species (Selaginella porphyrospora, Zigadenus virescens and Gentiana spathacea) were recorded. Despite the reduced area of this mountain range, which represents around 0.45% of the area covered by the Flora of the Bajío and of Adjacent Regions project (about 50,000 km2), its floristic richness represents 8.7% of the total flora expected for that region.


2012 ◽  
Vol 16 (11) ◽  
pp. 4447-4465 ◽  
Author(s):  
S. Ye ◽  
M. Yaeger ◽  
E. Coopersmith ◽  
L. Cheng ◽  
M. Sivapalan

Abstract. The goal of this paper is to explore the process controls underpinning regional patterns of variations of streamflow regime behavior, i.e., the mean seasonal variation of streamflow within the year, across the continental United States. The ultimate motivation is to use the resulting process understanding to generate insights into the physical controls of another signature of streamflow variability, namely the flow duration curve (FDC). The construction of the FDC removes the time dependence of flows. Thus in order to better understand the physical controls in regions that exhibit strong seasonal dependence, the regime curve (RC), which is closely connected to the FDC, is studied in this paper and later linked back to the FDC. To achieve these aims a top-down modeling approach is adopted; we start with a simple two-stage bucket model, which is systematically enhanced through addition of new processes on the basis of model performance assessment in relation to observations, using rainfall-runoff data from 197 United States catchments belonging to the MOPEX dataset. Exploration of dominant processes and the determination of required model complexity are carried out through model-based sensitivity analyses, guided by a performance metric. Results indicated systematic regional trends in dominant processes: snowmelt was a key process control in cold mountainous catchments in the north and north-west, whereas snowmelt and vegetation cover dynamics were key controls in the north-east; seasonal vegetation cover dynamics (phenology and interception) were important along the Appalachian mountain range in the east. A simple two-bucket model (with no other additions) was found to be adequate in warm humid catchments along the west coast and in the south-east, with both regions exhibiting strong seasonality, whereas much more complex models are needed in the dry south and south-west. Agricultural catchments in the mid-west were found to be difficult to predict with the use of simple lumped models, due to the strong influence of human activities. Overall, these process controls arose from general east-west (seasonality) and north-south (aridity, temperature) trends in climate (with some exceptions), compounded by complex dynamics of vegetation cover and to a less extent by landscape factors (soils, geology and topography).


2021 ◽  
Author(s):  
Shahid Afzal ◽  
Humira Nesar ◽  
Zarrin Imran ◽  
Wasim Ahmad

Abstract Despite enormous diversity, abundance and their role in ecosystem processes, little is known about how community structures of soil-inhabiting nematodes differ across elevation gradient. For this, soil nematode communities were investigated along an elevation gradient of 1000 to 2500 m asl across a temperate vegetation in Banihal-Pass of Pir-Panjal mountain range. We aimed to determine how the elevation gradient affect the nematode community structure, diversity and contribution to belowground carbon assimilation in the form of metabolic footprint. Our results showed that total nematode abundance and the abundance of different trophic groups (fungivores, herbivores and omnivores) declined with the increase of elevation. Shannon index, generic richness and evenness index indicated that nematode communities were more diverse at lower elevations and declined significantly with increase in elevation. Nematode community showed a pattern of decline in overall metabolic footprint with the increase of elevation. Nematode abundances and diversity proved to be more sensitive to elevation induced changes as more abundant and diverse nematode assemblage are supported at lower elevations. Overall it appears nematode abundance, diversity and contribution to belowground carbon cycling is stronger at lower elevations and gradually keep declining towards higher elevations under temperate vegetation cover in Banihal-pass of Pir-Panjal mountain range.


Author(s):  
R.J. Barrnett

This subject, is like observing the panorama of a mountain range, magnificent towering peaks, but it doesn't take much duration of observation to recognize that they are still in the process of formation. The mountains consist of approaches, materials and methods and the rocky substance of information has accumulated to such a degree that I find myself concentrating on the foothills in the foreground in order to keep up with the advance; the edifices behind form a wonderous, substantive background. It's a short history for such an accumulation and much of it has been moved by the members of the societies that make up this International Federation. My panel of speakers are here to provide what we hope is an interesting scientific fare, based on the fact that there is a continuum of biological organization from biochemical molecules through macromolecular assemblies and cellular membranes to the cell itself. Indeed, this fact explains the whole range of towering peaks that have emerged progressively during the past 25 years.


Sign in / Sign up

Export Citation Format

Share Document