scholarly journals Design of Time-varying Stochastic Process with Dynamic Bayesian Networks

2007 ◽  
Vol 2 (4) ◽  
pp. 543-548 ◽  
Author(s):  
Hyun-Cheol Cho ◽  
M.Sami Fadali ◽  
Kwon-Soon Lee
2010 ◽  
Vol 22 (1) ◽  
pp. 158-189 ◽  
Author(s):  
Seif Eldawlatly ◽  
Yang Zhou ◽  
Rong Jin ◽  
Karim G. Oweiss

Coordination among cortical neurons is believed to be a key element in mediating many high-level cortical processes such as perception, attention, learning, and memory formation. Inferring the structure of the neural circuitry underlying this coordination is important to characterize the highly nonlinear, time-varying interactions between cortical neurons in the presence of complex stimuli. In this work, we investigate the applicability of dynamic Bayesian networks (DBNs) in inferring the effective connectivity between spiking cortical neurons from their observed spike trains. We demonstrate that DBNs can infer the underlying nonlinear and time-varying causal interactions between these neurons and can discriminate between mono- and polysynaptic links between them under certain constraints governing their putative connectivity. We analyzed conditionally Poisson spike train data mimicking spiking activity of cortical networks of small and moderately large size. The performance was assessed and compared to other methods under systematic variations of the network structure to mimic a wide range of responses typically observed in the cortex. Results demonstrate the utility of DBN in inferring the effective connectivity in cortical networks.


2010 ◽  
Vol 143-144 ◽  
pp. 634-638
Author(s):  
Zi Li Zhang ◽  
Hong Wei Song

Dynamic Bayesian networks can be well dealt with the time-varying multivariable problem. The state model based on Dynamic Bayesian networks can more accurately describe the relationship between the system state and the influencing factors. In this paper, the width of the reasoning is used to simplify the amount of data in the reasoning process. Multi-step state prediction is achieved by extending time-slice. Experiment has shown that the proposed algorithm can achieve better prediction results.


Optik ◽  
2014 ◽  
Vol 125 (10) ◽  
pp. 2243-2247 ◽  
Author(s):  
Rui Yao ◽  
Yanning Zhang ◽  
Yong Zhou ◽  
Shixiong Xia

2015 ◽  
Vol 764-765 ◽  
pp. 1319-1323
Author(s):  
Rong Shue Hsiao ◽  
Ding Bing Lin ◽  
Hsin Piao Lin ◽  
Jin Wang Zhou

Pyroelectric infrared (PIR) sensors can detect the presence of human without the need to carry any device, which are widely used for human presence detection in home/office automation systems in order to improve energy efficiency. However, PIR detection is based on the movement of occupants. For occupancy detection, PIR sensors have inherent limitation when occupants remain relatively still. Multisensor fusion technology takes advantage of redundant, complementary, or more timely information from different modal sensors, which is considered an effective approach for solving the uncertainty and unreliability problems of sensing. In this paper, we proposed a simple multimodal sensor fusion algorithm, which is very suitable to be manipulated by the sensor nodes of wireless sensor networks. The inference algorithm was evaluated for the sensor detection accuracy and compared to the multisensor fusion using dynamic Bayesian networks. The experimental results showed that a detection accuracy of 97% in room occupancy can be achieved. The accuracy of occupancy detection is very close to that of the dynamic Bayesian networks.


Author(s):  
Josquin Foulliaron ◽  
Laurent Bouillaut ◽  
Patrice Aknin ◽  
Anne Barros

The maintenance optimization of complex systems is a key question. One important objective is to be able to anticipate future maintenance actions required to optimize the logistic and future investments. That is why, over the past few years, the predictive maintenance approaches have been an expanding area of research. They rely on the concept of prognosis. Many papers have shown how dynamic Bayesian networks can be relevant to represent multicomponent complex systems and carry out reliability studies. The diagnosis and maintenance group from French institute of science and technology for transport, development and networks (IFSTTAR) developed a model (VirMaLab: Virtual Maintenance Laboratory) based on dynamic Bayesian networks in order to model a multicomponent system with its degradation dynamic and its diagnosis and maintenance processes. Its main purpose is to model a maintenance policy to be able to optimize the maintenance parameters due to the use of dynamic Bayesian networks. A discrete state-space system is considered, periodically observable through a diagnosis process. Such systems are common in railway or road infrastructure fields. This article presents a prognosis algorithm whose purpose is to compute the remaining useful life of the system and update this estimation each time a new diagnosis is available. Then, a representation of this algorithm is given as a dynamic Bayesian network in order to be next integrated into the Virtual Maintenance Laboratory model to include the set of predictive maintenance policies. Inference computation questions on the considered dynamic Bayesian networks will be discussed. Finally, an application on simulated data will be presented.


Sign in / Sign up

Export Citation Format

Share Document