scholarly journals Using bentonite for NPP liquid waste treatment

2015 ◽  
Vol 5 (3) ◽  
pp. 38-43
Author(s):  
Dang Hanh Bui

During operation, nuclear power plants (NPPs) release a large quantity of water waste containing radionuclides required treatment for protection of the radiation workers and the environment. This paper introduces processes used to treat water waste from Paks NPP in Hungary and it also presents the results of a study on the use of Vietnamese bentonite to remove radioactive Caesium from a simulated water waste containing Cs

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 98
Author(s):  
Jaromír Marek

The article first summarizes case studies on the three basic types of treated water used in power plants and heating stations. Its main focus is Czechia as the representative of Eastern European countries. Water as the working medium in the power industry presents the three most common cycles—the first is make-up water for boilers, the second is cooling water and the third is represented by a specific type of water (e.g., liquid waste mixtures, primary and secondary circuits in nuclear power plants, turbine condensate, etc.). The water treatment technologies can be summarized into four main groups—(1) filtration (coagulation) and dosing chemicals, (2) ion exchange technology, (3) membrane processes and (4) a combination of the last two. The article shows the ideal industry-proven technology for each water cycle. Case studies revealed the economic, technical and environmental advantages/disadvantages of each technology. The percentage of technologies operated in energetics in Eastern Europe is briefly described. Although the work is conceived as an overview of water treatment in real operation, its novelty lies in a technological model of the treatment of turbine condensate, recycling of the cooling tower blowdown plus other liquid waste mixtures, and the rejection of colloidal substances from the secondary circuit in nuclear power plants. This is followed by an evaluation of the potential novel technologies and novel materials.


2001 ◽  
Vol 297 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Jiawei Sheng ◽  
Kwansik Choi ◽  
Myung-Jae Song

2009 ◽  
Vol 1193 ◽  
Author(s):  
T. Advocat ◽  
C. Ferry ◽  
F. Goutelard ◽  
C. Lamouroux ◽  
J.F. Wagner ◽  
...  

AbstractFrom uranium-ore treatment to spent fuel recycling, waste treatment and conditioning and to final storage of waste packages, radionuclides are involved in numerous chemical and physical reactions. The understanding of their chemical forms (speciation) and behavior as well (retention, complexation,...), as a function of the environment conditions (T, P, solid/liquid/gas interfaces), are key issues for the development of the industrial nuclear activities. Dedicated analytical tools are needed to determine the radionuclide concentrations and speciation in the liquids, solids and gas, over a wide range of concentrations and matrixes. The obtained experimental data on radionuclide speciation are integrated in dedicated data bases, supporting various models used to simulate the system behavior (i.e. RN migration under geological disposal, RN contamination in the primary fluids of nuclear power plants, RN behavior in the PUREX process, etc.). There are several needs in the following domains of the fuel cycle :♦ The development of innovative methods to enhance analytical performances of isotopic composition of elements in irradiated fuels or waste streams arising from processed spent fuels. Isobaric interferences may be suppressed by specific ion-molecules reactions in collision/cell coupled with Mass Spectrometer, instead of preliminary chromatographic separations.♦ The thermo chemistry at high temperature and pressure of the coolant fluids of the nuclear power plants, to model the solid/liquids interactions controlling its contamination by the activated products and hideout processes.♦ The development of scientific and operational models of the radiolysis of organic molecules and materials, under extreme conditions (γ and α radiolysis), to understand the controlling long-term degradation phenomena ( i.e. H2 degassing in the waste packages).♦ The fundamental understanding of sorption processes of redox sensitive elements such as U on specific mineral surfaces, in the presence of organic molecules, to develop dedicated tools for radionuclide monitoring and measurement in the environment.


Author(s):  
Marjorie B. Bauman ◽  
Richard F. Pain ◽  
Harold P. Van Cott ◽  
Margery K. Davidson

2010 ◽  
pp. 50-56 ◽  
Author(s):  
Pablo T. León ◽  
Loreto Cuesta ◽  
Eduardo Serra ◽  
Luis Yagüe

Sign in / Sign up

Export Citation Format

Share Document