scholarly journals Alternative fractional derivative operator on non-newtonian calculus and its approaches

2021 ◽  
Vol 34 (02) ◽  
pp. 906-915
Author(s):  
Mohammad Momenzadeh ◽  
Sajedeh Norozpou

Nowadays, study on fractional derivative and integral operators is one of the hot topics of mathematics and lots of investigations and studies make their attentions in this field. Most of these concerns raised from the vast application of these operators in study of phenomena’s models. These operators interpreted by Newtonian calculus, however different types of calculi are existed and we introduce the fractional derivative operators focused on Bi-geometric calculus and also their fractional differential equations are studied.

2021 ◽  
Vol 24 (4) ◽  
pp. 1220-1230
Author(s):  
Mohammed Al-Refai

Abstract In this paper, we formulate and prove two maximum principles to nonlinear fractional differential equations. We consider a fractional derivative operator with Mittag-Leffler function of two parameters in the kernel. These maximum principles are used to establish a pre-norm estimate of solutions, and to derive certain uniqueness and positivity results to related linear and nonlinear fractional initial value problems.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Some new Gronwall-Bellman type inequalities are presented in this paper. Based on these inequalities, new explicit bounds for the related unknown functions are derived. The inequalities established can also be used as a handy tool in the research of qualitative as well as quantitative analysis for solutions to some fractional differential equations defined in the sense of the modified Riemann-Liouville fractional derivative. For illustrating the validity of the results established, we present some applications for them, in which the boundedness, uniqueness, and continuous dependence on the initial value for the solutions to some certain fractional differential and integral equations are investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Adel Al-Rabtah ◽  
Shaher Momani ◽  
Mohamed A. Ramadan

Suitable spline functions of polynomial form are derived and used to solve linear and nonlinear fractional differential equations. The proposed method is applicable for0<α≤1andα≥1, whereαdenotes the order of the fractional derivative in the Caputo sense. The results obtained are in good agreement with the exact analytical solutions and the numerical results presented elsewhere. Results also show that the technique introduced here is robust and easy to apply.


Author(s):  
Rawid Banchuin

In this chapter, the authors report their work on the application of fractional derivative to the study of the memristor dynamic where the effects of the parasitic fractional elements of the memristor have been studied. The fractional differential equations of the memristor and the memristor-based circuits under the effects of the parasitic fractional elements have been formulated and solved both analytically and numerically. Such effects of the parasitic fractional elements have been studied via the simulations based on the obtained solutions where many interesting results have been proposed in the work. For example, it has been found that the parasitic fractional elements cause both charge and flux decay of the memristor and the impasse point breaking of the phase portraits between flux and charge of the memristor-based circuits similarly to the conventional parasitic elements. The effects of the order and the nonlinearity of the parasitic fractional elements have also been reported.


Sign in / Sign up

Export Citation Format

Share Document