scholarly journals INFLUENCE OF DIFFERENT ASSEMBLIES ON PRE-HEATING THE HSLA SAR 80T STEEL ON COATED ELECTRODE WELDING

2020 ◽  
Vol 19 (2) ◽  
pp. 40
Author(s):  
J. S. Bastos ◽  
C. A. M. Ferreira ◽  
M. C.L. Souza ◽  
J. S. Dias ◽  
N. C. O. Tapanes

The present work evaluated the influence of assemblies other than preheating in the welding process obtained by coated electrode, using high strength and low alloy steel SAR 80T as the base metal and the AWS E7018 electrode as the addition metal. In order to prevent cracks, preheating and interpassing for low alloy steel was performed. Depending on the way the preheating equipment is installed, it may take more or less time to reach the preheat temperature. Different assembly arrangements for top joints were evaluated, aiming at cost reduction, in addition to evaluations of the mechanical properties of the joint. Visual testing, ultrasound, micrography, macrography and cross-sectional traction were performed. The results obtained were considered acceptable and showed that there was an influence on time, cost of preheating and resistance to impact.

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 244 ◽  
Author(s):  
Nakarin Srisuwan ◽  
Nuengruetai Kumsri ◽  
Trinet Yingsamphancharoen ◽  
Attaphon Kaewvilai

This work presents the improvement of hardfacing welding for American Society for Testing and Materials (ASTM) A572-based high-strength, low-alloy steel by controlling the heating/cooling conditions of welding process. In the welding process, the buffer and hardfacing layers were welded onto A572-based material by a nickel–chromium electrode and chromium carbide electrode, respectively. The base metal and electrode materials were controlled by the heating/cooling process during the welding to reduce excessive stress, which could result in a crack in the specimens. The welded specimens were examined by visual and penetrant inspections for evaluating the welding quality. The macro–micro structure of the deposited layer was investigated; scanning electron microscope with an energy-dispersive X-ray spectrometer (SEM-EDS) and XRD were used to characterize structural properties, elemental compositions, and crystallite sizes of the welded specimens. The surface properties, such as hardness, impact, and abrasive wear of the welded specimens, were tested for evaluation of the wear resistance of the welded specimens.


2018 ◽  
Vol 18 ◽  
pp. 7-13
Author(s):  
Brahim Belkessa ◽  
Djamel Miroud ◽  
Billel Cheniti ◽  
Naima Ouali ◽  
Maamar Hakem ◽  
...  

This work purposes to investigate the microstructure and the mechanical behavior of dissimilar metals weld between 2205 duplex stainless steel (UNS 31803) and high strength low alloy steel API X52. The joining was produced by shielded metal arc welding process using two different filler metals, the duplex E2209 and austenitic E309 grade.The microstructures of the dissimilar welded joints have been investigated by optical microscopy, scanning electron microscopy and energy-dispersive spectroscopy (EDS). The EDS analysis performed at the API X52/weld metal interface showed an evident gradient of Cr and Ni between fusion and type II boundaries, where the highest hardness value was recorded.


2021 ◽  
Vol 9 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Saadat Ali Rizvi ◽  
Rajnish Singh ◽  
Saurabh Kumar Gupta

The basic aim of this study was to find a relationship between heat input and mechanical properties of high strength low alloy steel (HSLA) welded joints and also elaborate its effect on microstructure. The combined effect of welding current, voltage and speed i.e. Heat Input on mechanical properties of High Strength Low Alloy Steel (ASTM A242 type-II) weldments have been studied in the present work. HSLA steel work pieces were welded by Gas metal arc welding (GMAW) process under varying welding current, arc voltage, and welding speed. Total nine samples were prepared at different heat input level i.e. 1.872 kJ/mm, 1.9333 kJ/mm, 2.0114 kJ/mm, 2.1 kJ/mm, 2.1956 kJ/mm, 2.296 kJ/mm, 2.4 kJ/mm, 2.5067 kJ/mm and 2.6154 kJ/mm It was observed that as heat input increases the ultimate tensile strength and microhardness of weldment decreased while impact strength increased and it was also observed that on increasing the heat input grain size of microstructure tends to coarsening it is only due to decreasing in cooling rate.


Alloy Digest ◽  
2007 ◽  
Vol 56 (1) ◽  

Abstract The high strength of Tenform XF450, a hot-rolled high-strength low-alloy steel, allows the user to increase the strength of a finished component or to reduce the thickness. The steel is used in the construction and the automotive industries. This datasheet provides information on composition, physical properties, tensile properties. and bend strength. It also includes information on forming. Filing Code: CS-148. Producer or source: Hille & Mueller, USA Inc. See also Alloy Digest CS-173, November 2012.


2018 ◽  
Vol 51 (4) ◽  
pp. 46
Author(s):  
N. Venkateswara Rao ◽  
G. Madhusudhan Reddy ◽  
S. Nagarjuna

Sign in / Sign up

Export Citation Format

Share Document