scholarly journals Wind Load Analysis owing to the Computation Fluid Dynamics and Wind Tunnel Test of a Container Crane

2009 ◽  
Vol 33 (3) ◽  
pp. 215-220 ◽  
Author(s):  
Su-Hong Lee ◽  
Dong-Seop Han ◽  
Geun-Jo Han
2008 ◽  
Vol 32 (3) ◽  
pp. 251-255
Author(s):  
Su-Hong Lee ◽  
Seong-Wook Lee ◽  
Dong-Seop Han ◽  
Tae-Hyung Kim ◽  
Geun-Jo Han

2007 ◽  
Vol 347 ◽  
pp. 365-372 ◽  
Author(s):  
Seong Wook Lee ◽  
Tae Won Ahn ◽  
Dong Seop Han ◽  
Tae Hyung Kim ◽  
Geun Jo Han

In this study we carried out to analyze the effect of wind load on the structural stability of a container crane according to the change of the boom shape using wind tunnel test and provided a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load at 75m/s wind velocity is applied on a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary-layer wind tunnel with 11.52m2 cross-section area. Each directional drag and overturning moment coefficients were investigated.


2006 ◽  
Vol 326-328 ◽  
pp. 1197-1200 ◽  
Author(s):  
Seong Wook Lee ◽  
Dong Seop Han ◽  
Geun Jo Han

This study was carried out to analyze the effect of wind load on the stability of an articulation type container crane using wind tunnel testing. This was done in order to furnish designers with data that can be used in the design of an articulation type container crane that is wind resistant, assuming an applied wind load of 75m/s velocity. Data acquisition conditions for this experiment were established in accordance with similarity. The scale of the articulation type container crane model, wind speed and time were chosen as 1/200, 1/13.3 and 1/15 respectively and this experiment was conducted using an Eiffel type atmospheric boundary-layer wind tunnel with 11.52m2 cross-sectional area. All directional drag and overturning moment coefficients were investigated and uplift forces due to wind load at each supporting point were analyzed.


2005 ◽  
Author(s):  
Vincent G. Chapin ◽  
Romaric Neyhousser ◽  
Stephane Jamme ◽  
Guillaume Dulliand ◽  
Patrick Chassaing

In this paper we propose a rational viscous Computational Fluid Dynamics (CFD) methodology applied to sailing yacht rig aerodynamic design and analysis. After an outlook of present challenges in high speed sailing, we emphasized the necessity of innovation and CFD to conceive, validate and optimize new aero-hydrodynamic concepts. Then, we present our CFD methodology through CAD, mesh generation, numerical and physical modelling choices, and their validation on typical rig configurations through wind-tunnel test comparisons. The methodology defined, we illustrate the relevance and wide potential of advanced numerical tools to investigate sailing yacht rig design questions like the relation between sail camber, propulsive force and aerodynamic finesse, and like the mast-mainsail non linear interaction. Through these examples, it is shown how sailing yacht rig improvements may be drawn by using viscous CFD based on Reynolds Averaged Navier-Stokes equations (RANS). Then the extensive use of viscous CFD, rather than wind-tunnel tests on scale models, for the evaluation or ranking of improved designs with increased time savings. Viscous CFD methodology is used on a preliminary study of the complex and largely unknown Yves Parlier Hydraplaneur double rig. We show how it is possible to increase our understanding of his flow physics with strong sail interactions, and we hope this methodology will open new roads toward optimized design. Throughout the paper, the necessary comparison between CFD and wind-tunnel test will be presented to focus on limitations and drawbacks of viscous CFD tools, and to address future improvements.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xianglei Wei ◽  
An Xu ◽  
Ruohong Zhao

The traditional wind-induced response analysis of high-rise buildings conventionally considers the wind load as a stationary stochastic process. That is, for a certain wind direction angle, the reference wind speed (usually refers to the mean wind speed at the building height) is assumed to be a constant corresponding to a certain return period. Combined with the recorded data in wind tunnel test, the structural response can be computed using the random vibration theory. However, in the actual typhoon process, the average wind speed is usually time-variant. This paper combines the interval process model and the nonrandom vibration analysis method with the wind tunnel test and proposes a method for estimating the response boundary of the high-rise buildings under nonstationary wind loads. With the given upper and lower bounds of time-variant wind excitation, this method can provide an effective calculation tool for estimating wind-induced vibration bounds for high-rise buildings under nonstationary wind load. The Guangzhou East tower, which is 530 m high and the highest supertall building in Guangzhou, China, was taken as an example to show the effectiveness of the method. The obtained boundary response can help disaster prevention and control during the passage of typhoons.


2010 ◽  
Vol 163-167 ◽  
pp. 4389-4394
Author(s):  
Cheng Qi Wang ◽  
Zheng Liang Li ◽  
Zhi Tao Yan ◽  
Qi Ke Wei

Wind load on complex-shape building, the wind tunnel test and numerical simulation were carried out. The two technologies supplement each other and their results meet well. There are mainly positive pressures on the windward surface, negative pressures on the roof, the leeward surface and the side. Especially, negative pressure is higher in the leeward region of the building corner. Its effect induced by the shape of the complex-shape building is remarkable.


Sign in / Sign up

Export Citation Format

Share Document