scholarly journals The Effects of Various Water Table Depths on CO2 Emission at Oil Palm Plantation on West Aceh Peat

2010 ◽  
Vol 15 (3) ◽  
pp. 255-260 ◽  
Author(s):  
Etik Puji Handayani ◽  
Meine van Noordwijk ◽  
Kamarudin Idris ◽  
Supiandi Sabiham ◽  
Sri Djuniwati
2017 ◽  
Vol 25 (3) ◽  
pp. 147-160
Author(s):  
Winarna Winarna ◽  
Muhammad Arif Yusuf ◽  
Suroso Rahutomo ◽  
Edy Sigit Sutarta

A field study on peat soil to investigate impacts of soil water table depth and soil ameliorant (steel sludge) had been carried out on mature oil palm. Three treatments of soil water table management and four rates of steel sludge application were applied in this study. Treatments of soil water table management were WLM1, WLM-2, and WLM-3, where soil water table depth was maintained at 35-50 cm, 60-75 cm, and >75 cm below the soil surface, respectively. Treatments of steel sludge were application of this soil ameliorant at the rate of 0; 3.15; 6.51; 9.86 kg tree-1. The study was arranged as split plot randomized block design by assigning soil water table management as main plot and rate of steel sludge as sub plot. Soil Data observed were actual soil water content, peat soil properties, CO2 emission, vegetative growth, and palm yield. The results showed that maintaining soil water table depth at < 75 cm could maintain actual soil moisture up to top parts of peat soil. On the other hand, deeper soil water table (>75 cm, WLM-3) caused significant effects on decreasing of soil moisture in the 0-10 cm layer of peat soil. CO2 emission was 37, 40, dan 45 ton ha-1 year-1 under WLM-1, WLM-2, and WLM-3, respectively. The drop of soil water table to >75 cm (WLM-3) significantly increased CO2 emission to about 11-18% higher than that on WLM-1 and WLM-2. Steel sludge application did not significantly decrease CO2 emission. The highest FFB yield was observed under WLM-1, then followed by WLM-2 and WLM-3. FFB yield was significantly higher when soil water depth was maintained at 35-75 cm than that at > 75 cm, it was 7-10% and 36-60% higher in 2014 and 2015, respectively. There were no significant effects of steel sludge application on FFB yield, but there was improvement on average bunch weight.


Author(s):  
Petir Papilo ◽  
Hartrisari H

<p>The implementation of the mandatory policy of mixing (blending) between biofuels into the fuel has an impact on the icreasing of biodiesel needs, increasing the oil palm plantation area and environmental impact in the form of CO2 emissions by the year 2025. This study aimed to identify the level of each factor needs as well as the impact on the environment. Through the analysis of the design of mathematical models, it is known that the gradually until 2030 has been an increased need for biofuels amounted 14.79 million KL. In an effort to meet the needs of the necessary biofuel oil palm plantations of 35,2 million hectares and an increase in CO2 emissions of 5,41 Gg t CO2.</p><p>Keywords: Biodiesel, CO2 Emission, Land Area, Mandatory Policy. Biodiesel, CO2 Emission, Land Area, Mandatory Policy</p>


Jurnal Solum ◽  
2011 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Maswar Maswar ◽  
Oteng Haridjaja ◽  
Supiandi Sabiham ◽  
Meine Van Noordwijk

Peat land conversion to oil palm plantation affects carbon stocks and can change a net sink of atmospheric carbon (C) into a net source. The influence of location, type of peat, drainage practices and fertilization is insufficiently known. A study was conducted in West Aceh from May 2008 until October 2009  in oil palm plantations of various age.  Carbon stocks and  C loss were calculated from data of bulk density (BD), ash content, carbon content, and peat depth. A new method for C loss estimates using ash as internal tracer was developed and tested. Peat land characteristics after drainage and conversion to oil palm plantation were investigated by field observation and laboratory analysis of peat soil samples in the laboratory. Results showed that: 1) Distance from the drain influences the rates of: a) water table depth, b) subsidence, with rates of 1,1  to 9,2 cm/year and 22.67 – 57.23% influence of C loss, and c) soil carbon loss. 2) Ash content and bulk density of the peat are related, indicating the partial loss of soil C during compaction. 3) An “internal tracer” estimate of peat C loss yields estimates of CO2 flux up to 48 t CO2-eq ha-1 y-1 for young oil palm, highly correlated with measured rates of subsidence of the surface and water table depth. 4) Patterns of weight loss of surface litter, measured in litter bags, respond to inherent quality (C/N). Some data for oil palm on shallow peat suggest that a net sink for C can be maintained under such conditions.Key words: Carbon stock, carbon loss, carbon accumulation,  oil palm, tropical peat


2014 ◽  
Vol 13 (3) ◽  
pp. 140-146
Author(s):  
M. Edwin S. Lubis ◽  
I. Yani Harahap ◽  
Taufigh C. Hidayat ◽  
Y. Pangaribua ◽  
Edy S. Sutarta ◽  
...  

Soil Research ◽  
2016 ◽  
Vol 54 (4) ◽  
pp. 397 ◽  
Author(s):  
Iain Goodrick ◽  
Paul N. Nelson ◽  
Steven Nake ◽  
Michael J. Webb ◽  
Michael I. Bird ◽  
...  

Soil carbon fluxes are highly variable in space and time under tree crops such as oil palm, and attempts to model such fluxes must incorporate an understanding of this variability. In this work, we measured soil CO2 emission, root biomass and pruned frond deposition rates and calculated carbon fluxes into and out of the soil in a mature (20-year-old, second planting cycle) oil palm plantation in Papua New Guinea. Tree-scale spatial variability in CO2 emission and root biomass was quantified by making measurements on a 35-point trapezoid grid covering the 38.5-m2 repeating unit of the plantation (n = 4 grids). In order to obtain an overall mean soil CO2 emission rate within 5% of the most accurate estimate, ≥24 measurement points were required. Soil CO2 emissions were spatially correlated with calculated carbon inputs (r2 = 0.605, slope 1 : 1), but not with soil water content or temperature. However, outputs were higher than inputs at all locations, with a mean overall output of 7.24 µmol m–2 s–1 and input of 3.02 µmol m–2 s–1. Inputs related to fronds, roots and groundcover constituted 60%, 36% and 4% of estimated inputs, respectively. The spatial correlation of carbon inputs and outputs indicates that mineralisation rate is controlled mostly by the amount rather than the nature or input depth of the additions. The spatially uniform net carbon emission from soil may be due to inaccuracies in calculated fluxes (especially root-related inputs) or to non-biological emissions.


2017 ◽  
Vol 25 (3) ◽  
pp. 147-160
Author(s):  
Winarna Winarna ◽  
Muhammad Arif Yusuf ◽  
Suroso Rahutomo ◽  
Edy Sigit Sutarta

A field study on peat soil to investigate impacts of soil water table depth and soil ameliorant (steel sludge) had been carried out on mature oil palm. Three treatments of soil water table management and four rates of steel sludge application were applied in this study. Treatments of soil water table management were WLM1, WLM-2, and WLM-3, where soil water table depth was maintained at 35-50 cm, 60-75 cm, and >75 cm below the soil surface, respectively. Treatments of steel sludge were application of this soil ameliorant at the rate of 0; 3.15; 6.51; 9.86 kg tree-1. The study was arranged as split plot randomized block design by assigning soil water table management as main plot and rate of steel sludge as sub plot. Soil Data observed were actual soil water content, peat soil properties, CO2 emission, vegetative growth, and palm yield. The results showed that maintaining soil water table depth at < 75 cm could maintain actual soil moisture up to top parts of peat soil. On the other hand, deeper soil water table (>75 cm, WLM-3) caused significant effects on decreasing of soil moisture in the 0-10 cm layer of peat soil. CO2 emission was 37, 40, dan 45 ton ha-1 year-1 under WLM-1, WLM-2, and WLM-3, respectively. The drop of soil water table to >75 cm (WLM-3) significantly increased CO2 emission to about 11-18% higher than that on WLM-1 and WLM-2. Steel sludge application did not significantly decrease CO2 emission. The highest FFB yield was observed under WLM-1, then followed by WLM-2 and WLM-3. FFB yield was significantly higher when soil water depth was maintained at 35-75 cm than that at > 75 cm, it was 7-10% and 36-60% higher in 2014 and 2015, respectively. There were no significant effects of steel sludge application on FFB yield, but there was improvement on average bunch weight.


SIMBIOSA ◽  
2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Fauziah Syamsi

Kelapa sawit merupakan salah satu tanaman meningkat paling pesat di dunia, dan mencakup lebih dari 13 juta ha di Asia Tenggara. Sumatera memiliki sejarah yang relatif panjang budidaya kelapa sawit komersial, dan banyak perkebunan telah menggantikan hutan hujan. Biasanya ini perkebunan monokultur mendukung spesies lebih sedikit daripada hutan, namun ada sangat sedikit informasi yang tersedia untuk kelelawar. Kami mencicipi kelelawar pemakan serangga di Sumatera Barat dalam perkebunan kelapa sawit matang di mana beberapa tutupan hutan dipertahankan di fragmen hutan di bukit-bukit dan di sepanjang sungai. Menggunakan total 180 kecapi perangkap malam kami dibandingkan dengan komunitas kelelawar dalam tiga jenis habitat: patch hutan, zona riparian dan perkebunan. Total kami ditangkap 1108 kelelawar yang mewakili 21 spesies dan 5 keluarga, dan mayoritas ini (dalam hal spesies dan kelimpahan) ditemukan di fragmen hutan. perkebunan kelapa sawit ditemukan menjadi habitat miskin untuk kelelawar - hanya empat orang dari dua spesies ditangkap. daerah pinggiran sungai didukung keanekaragaman menengah, dan mungkin penting sebagai koridor satwa liar antara fragmen hutan. Kata kunci : Biodiversitas, keleawar Microchiropteran


Sign in / Sign up

Export Citation Format

Share Document