soil amelioration
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 21)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 298 ◽  
pp. 113535
Author(s):  
Wenchao Zhang ◽  
Wenxin Zhang ◽  
Shujuan Wang ◽  
Jia Liu ◽  
Yan Li ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 663
Author(s):  
Areum Kim ◽  
Bongsoon Lim ◽  
Jaewon Seol ◽  
Chihong Lim ◽  
Younghan You ◽  
...  

Research Highlights: This study was carried out to diagnose the forest ecosystem damaged by air pollution and to then develop a restoration plan to be used in the future. The restoration plan was prepared by combining the diagnostic assessment for the damaged forest ecosystem and the reference information obtained from the conservation reserve with an intact forest ecosystem. The restoration plan includes the method for the amelioration of the acidified soil and the plant species to be introduced for restoration of the damaged vegetation depending on the degree of damage. Background and Objectives: The forest ecosystem around the Seokpo smelter was so severely damaged that denuded lands without any vegetation appear, and landslides continue. Therefore, restoration actions are urgently required to prevent more land degradation. This study aims to prepare the restoration plan. Materials and Methods: The diagnostic evaluation was carried out through satellite image analysis and field surveys for vegetation damage and soil acidification. The reference information was obtained from the intact natural forest ecosystem. Results: Vegetation damage was severe near the pollution source and showed a reducing trend as it moved away. The more severe the vegetation damage, the more acidic the soil was, and thereby the exchangeable cation content and vegetation damage were significantly correlated. The restoration plan was prepared by proposing a soil amelioration method and the plants to be introduced. The soil amelioration method focuses on ameliorating acidified soil and supplementing insufficient nutrients. The plants to be introduced for restoring the damaged forest ecosystem were prepared by compiling the reference information, the plants tolerant to the polluted environment, and the early successional species. The restoration plan proposed the Pinus densiflora, Quercus mongolica, and Cornuscontroversa–Juglansmandshurica communities as the reference conditions for the ridge, slope, and valley, respectively, by reflecting the topographic condition. Conclusions: The result of a diagnostic assessment showed that ecological restoration is required urgently as vegetation damage and soil acidification are very severe. The restoration plan was prepared by compiling the results of these diagnostic assessments and reference information collected from intact natural forests. The restoration plan was prepared in the two directions of soil amelioration and vegetation restoration.


2021 ◽  
Vol 08 (03) ◽  
pp. 12-15
Author(s):  
Шохрат Магеррам гызы Ширинова ◽  
◽  
Эльдар агеррам оглу Гасымов ◽  
Владимир Рамазан оглу Курбанов ◽  
◽  
...  

The introduction of riverwater accumulated over the years in reservoirs and canale for agricultural crops can contribute to the emergence of new representatives of mikrofloraandmikrofauna, wich, in turn, contribute to improving soil fertility, improving soil amelioration and reducing the dosage of mineral fertilizers, thus improving the ecological condition of the soil composition, in the Nakhchivan Autonomous Republic, water supply to agricultural areas is provided by reservoirs and canals including the Vaikhyr reservoir, the Syrabian reservoir, the Neckram canal and the Turian canal. Over the years, as the Nakhchivanriver waters flow in to them suspended sediment deposition has bettaking pleace. Key words:gross composition, chemistry, sediments, river load, minerals, fertility


Biochar ◽  
2021 ◽  
Author(s):  
Megan de Jager ◽  
Luise Giani

AbstractThe hydrothermal carbonization (HTC) of biogas digestate alters the raw materials inherent characteristics to produce a carbon (C)-rich hydrochar (HC), with an improved suitability for soil amelioration. Numerous studies report conflicting impacts of various HC application rates on soil properties and plant growth. In this study, the influence of HC application rate on soil improvement and plant growth aspects was investigated in three diverse soils (Chernozem, Podzol, and Gleysol). Pot trials were conducted in which all soils were amended with 5, 10, 20 and 30% (w/w) HC in quintuplicate, with two controls of pure soil (with and without plants, respectively) also included. Prior to potting, soil samples were collected from all HC-amended soils and controls and analyzed for soil pH, plant available nutrients (PO4-P and K), and microbial activity using standard laboratory and statistical methods. Immediately after potting, a 6-week seed germination experiment using Chinese cabbage was conducted to determine germination success, followed by a plant growth experiment of equal duration and plant species to determine biomass success. At the end of the study (after a total plant growth period of 12 weeks), each pot was sampled and comparatively analyzed for the same soil properties as at the beginning of the study. Soil pH shifted toward the pH of the HC (6.6) in all soils over the course of the study, but was most expressed in the 20% and 30% application rates, confirming the well-documented liming effect of HC. The addition of HC increased the PO4-P and K contents, particularly with 20% and 30% HC amendments. These results are proposedly due to the large labile C fraction of the HC, which is easily degradable by microorganisms. The rapid decomposition of this C fraction prompted the quick release of the HCs inherently high PO4-P and K content into the soil, and in turn, further stimulated microbial activity, until this fraction was essentially depleted. HC addition did not inhibit seed germination at any rate, presumably due to a lack of phytotoxic compounds in the HC from aging and microbial processes, and furthermore, showed no significant impact (positive or negative) on plant growth in any soil, despite improved soil conditions. In conclusion, although less pronounced, soil improvements were still achievable and maintainable at lower application rates (5% and 10%), whereas higher rates did not ensure greater benefits for plant growth. While the addition of high rates of HC did not detrimentally effect soil quality or plant growth, it could lead to leaching if the nutrient supply exceeds plant requirements and the soil’s nutrient retention capacity. Therefore, this study validates the previous study in the effectiveness of the biogas digestate HC for soil amelioration and suggests that smaller regularly repeated HC applications may be recommendable for soil improvement.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1019
Author(s):  
Yuji Sakai ◽  
Masataka Nakamura ◽  
Chang Wang

Increasing soil carbon storage and biomass utilization is an effective process for mitigating global warming. Coal bio-briquettes (CBB) are made using two low-ranked coals with high sulfur content, corn stalks, and calcium hydroxide, and the combustion ash can ameliorate the physicochemical properties in salt-affected soil. CBB ash contains mainly calcium compounds, such as calcium sulfate, calcium hydroxide, and calcium carbonate, and coal fly ash and biomass ash. In this paper, changes in soil carbon and nitrogen content through salt-affected soil amelioration during 5 months using two CBB ashes and pig manure were examined in Northeast China. Application rates of CBB ash were 0 tha−1 (control), 11.6 tha−1, 23.2 tha−1, 46.4 tha−1, and 69.6 tha−1. Consequently, total carbon content in topsoil (0–0.15 m) after harvest of maize in all test fields indicated a range between 27.7 tCha−1 and 50.2 tCha−1, and showed increased levels compared to untreated salt-affected soil. In a 3.0% (69.6 tha−1) application plot of only CBB ash with higher carbon and higher exchangeable Ca2+, the carbon content increased by 51.5% compared to control plot, and changes in carbon sequestration compared to untreated soil was roughly twice that of the control plot. CBB ash contributed to carbon application and pig manure supply as a form of N fertilization in the case of all test plots. Changes in carbon content due to soil amelioration have a significant relationship with changes in corn production and soil chemical properties, such as pH, Na+, Cl−, sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP). Therefore, CBB production from low-ranked coal and waste biomass, and the use of CBB ash in agriculture is advocated as an effective means for sequestering carbon.


Sign in / Sign up

Export Citation Format

Share Document