scholarly journals On Hyperideals in Left Almost Semihypergroups

ISRN Algebra ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Kostaq Hila ◽  
Jani Dine

This paper deals with a class of algebraic hyperstructures called left almost semihypergroups (LA-semihypergroups), which are a generalization of LA-semigroups and semihypergroups. We introduce the notion of LA-semihypergroup, the related notions of hyperideal, bi-hyperideal, and some properties of them are investigated. It is a useful nonassociative algebraic hyperstructure, midway between a hypergroupoid and a commutative hypersemigroup, with wide applications in the theory of flocks, and so forth. We define the topological space and study the topological structure of LA-semihypergroups using hyperideal theory. The topological spaces formation guarantee for the preservation of finite intersection and arbitrary union between the set of hyperideals and the open subsets of resultant topologies.

2020 ◽  
pp. 96-104
Author(s):  
admin admin ◽  
◽  
◽  
◽  
M M.Karthika ◽  
...  

The notion of fuzzy sets initiated to overcome the uncertainty of an object. Fuzzy topological space, in- tuitionistic fuzzy sets in topological structure space, vagueness in topological structure space, rough sets in topological space, theory of hesitancy and neutrosophic topological space, etc. are the extension of fuzzy sets. Soft set is a family of parameters which is also a set. Fuzzy soft topological space, intuitionistic fuzzy soft and neutrosophic soft topological space are obtained by incorporating soft sets with various topological structures. This motivates to write a review and study on various soft set concepts. This paper shows the detailed review of soft topological spaces in various sets like fuzzy, Intuitionistic fuzzy set and neutrosophy. Eventually, we compared some of the existing tools in the literature for easy understanding and exhibited their advantages and limitations.


2000 ◽  
Vol 1 (1) ◽  
pp. 13
Author(s):  
A.V. Arhangelskii

<p>A (binary) product operation on a topological space X is considered. The only restrictions are that some element e of X is a left and a right identity with respect to this multiplication, and that certain natural continuity requirements are satisfied. The operation is called diagonalization (of X). Two problems are considered: 1. When a topological space X admits such an operation, that is, when X is diagonalizable? 2. What are necessary conditions for diagonalizablity of a space (at a given point)? A progress is made in the article on both questions. In particular, it is shown that certain deep results about the topological structure of compact topological groups can be extended to diagonalizable compact spaces. The notion of a Moscow space is instrumental in our study.</p>


Filomat ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 2475-2487 ◽  
Author(s):  
Sang-Eon Han

Since a locally finite topological structure plays an important role in the fields of pure and applied topology, the paper studies a special kind of locally finite spaces, so called a space set topology (for brevity, SST) and further, proves that an SST is an Alexandroff space satisfying the separation axiom T0. Unlike a point set topology, since each element of an SST is a space, the present paper names the topology by the space set topology. Besides, for a connected topological space (X,T) with |X| = 2 the axioms T0, semi-T1/2 and T1/2 are proved to be equivalent to each other. Furthermore, the paper shows that an SST can be used for studying both continuous and digital spaces so that it plays a crucial role in both classical and digital topology, combinatorial, discrete and computational geometry. In addition, a connected SST can be a good example showing that the separation axiom semi-T1/2 does not imply T1/2.


2019 ◽  
Vol 7 (1) ◽  
pp. 250-252 ◽  
Author(s):  
Tobias Fritz

Abstract In this short note, we prove that the stochastic order of Radon probability measures on any ordered topological space is antisymmetric. This has been known before in various special cases. We give a simple and elementary proof of the general result.


Author(s):  
B. J. Day ◽  
G. M. Kelly

We are concerned with the category of topological spaces and continuous maps. A surjection f: X → Y in this category is called a quotient map if G is open in Y whenever f−1G is open in X. Our purpose is to answer the following three questions:Question 1. For which continuous surjections f: X → Y is every pullback of f a quotient map?Question 2. For which continuous surjections f: X → Y is f × lz: X × Z → Y × Z a quotient map for every topological space Z? (These include all those f answering to Question 1, since f × lz is the pullback of f by the projection map Y ×Z → Y.)Question 3. For which topological spaces Z is f × 1Z: X × Z → Y × Z a qiptoent map for every quotient map f?


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Amit Kumar Singh ◽  
Rekha Srivastava

In this paper we have studied separation axiomsTi,i=0,1,2in an intuitionistic fuzzy topological space introduced by Coker. We also show the existence of functorsℬ:IF-Top→BF-Topand𝒟:BF-Top→IF-Topand observe that𝒟is left adjoint toℬ.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dipankar Dey ◽  
Dhananjay Mandal ◽  
Manabendra Nath Mukherjee

PurposeThe present article deals with the initiation and study of a uniformity like notion, captioned μ-uniformity, in the context of a generalized topological space.Design/methodology/approachThe existence of uniformity for a completely regular topological space is well-known, and the interrelation of this structure with a proximity is also well-studied. Using this idea, a structure on generalized topological space has been developed, to establish the same type of compatibility in the corresponding frameworks.FindingsIt is proved, among other things, that a μ-uniformity on a non-empty set X always induces a generalized topology on X, which is μ-completely regular too. In the last theorem of the paper, the authors develop a relation between μ-proximity and μ-uniformity by showing that every μ-uniformity generates a μ-proximity, both giving the same generalized topology on the underlying set.Originality/valueIt is an original work influenced by the previous works that have been done on generalized topological spaces. A kind of generalization has been done in this article, that has produced an intermediate structure to the already known generalized topological spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fatemah Ayatollah Zadeh Shirazi ◽  
Meysam Miralaei ◽  
Fariba Zeinal Zadeh Farhadi

In the following text, we want to study the behavior of one point compactification operator in the chain Ξ := {Metrizable, Normal, T2, KC, SC, US, T1, TD, TUD, T0, Top} of subcategories of category of topological spaces, Top (where we denote the subcategory of Top, containing all topological spaces with property P , simply by P). Actually we want to know, for P∈Ξ and X∈P, the one point compactification of topological space X belongs to which elements of Ξ. Finally we find out that the chain {Metrizable, T2, KC, SC, US, T1, TD, TUD, T0, Top} is a forwarding chain with respect to one point compactification operator.


2001 ◽  
Vol 27 (8) ◽  
pp. 505-512 ◽  
Author(s):  
José Carlos Rodríguez Alcantud

We extend van Dalen and Wattel's (1973) characterization of orderable spaces and their subspaces by obtaining analogous results for two larger classes of topological spaces. This type of spaces are defined by considering preferences instead of linear orders in the former definitions, and possess topological properties similar to those of (totally) orderable spaces (cf. Alcantud, 1999). Our study provides particular consequences of relevance in mathematical economics; in particular, a condition equivalent to the existence of a continuous preference on a topological space is obtained.


2004 ◽  
Vol 2004 (70) ◽  
pp. 3829-3837
Author(s):  
Doğan Çoker ◽  
A. Haydar Eş ◽  
Necla Turanli

The purpose of this paper is to prove a Tychonoff theorem in the so-called “intuitionistic fuzzy topological spaces.” After giving the fundamental definitions, such as the definitions of intuitionistic fuzzy set, intuitionistic fuzzy topology, intuitionistic fuzzy topological space, fuzzy continuity, fuzzy compactness, and fuzzy dicompactness, we obtain several preservation properties and some characterizations concerning fuzzy compactness. Lastly we give a Tychonoff-like theorem.


Sign in / Sign up

Export Citation Format

Share Document