scholarly journals Time-Series Regression Model for Prediction of Mean Daily Global Solar Radiation in Al-Ain, UAE

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Hassan A. N. Hejase ◽  
Ali H. Assi

The availability of short-term forecast weather model for a particular country or region is essential for operation planning of energy systems. This paper presents the first step by a group of researchers at UAE University to establish a weather model for the UAE using the weather data for at least 10 years and employing various models such as classical empirical models, artificial neural network (ANN) models, and time-series regression models with autoregressive integrated moving-average (ARIMA). This work uses time-series regression with ARIMA modeling to establish a model for the mean daily and monthly global solar radiation (GSR) for the city of Al-Ain, United Arab Emirates. Time-series analysis of solar radiation has shown to yield accurate average long-term prediction performance of solar radiation in Al-Ain. The model was built using data for 10 years (1995–2004) and was validated using data of three years (2005–2007), yielding deterministic coefficients (R2) of 92.6% and 99.98% for mean daily and monthly GSR data, respectively. The low corresponding values of mean bias error (MBE), mean absolute bias error (MABE), mean absolute percentage error (MAPE), and root-mean-square error (RMSE) confirm the adequacy of the obtained model for long-term prediction of GSR data in Al-Ain, UAE.

2016 ◽  
Author(s):  
Rosa Delia García ◽  
Emilio Cuevas ◽  
Omaira Elena García ◽  
Ramon Ramón ◽  
Pedro Miguel Romero-Campos ◽  
...  

Abstract. A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on July 17, 2014. We compare global solar radiation (GSR) records measured with a CM-21 pyranometer Kipp & Zonen, taken in the framework of the Baseline Surface Radiation Network, with those measured with a Multifilter Rotating Shadowband Radiometer (MFRSR), and a bimetallic pyranometer (PYR), and GSR estimated from sunshine duration performed by a Campbell-Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given the GSR BSRN records are subject of strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the intercomparison study. We obtain an overall root mean square error (RMSE) of ~0.9 MJm2 (4 %) for GSR PYR and GSR MFRSR, 1.9 MJm2 (7 %) and 1.2 MJm2 (5 %) for GSR CS and GSR CSD, respectively. Factors such as temperature, fraction of the clear sky, relative humidity and the solar zenith angle have shown to moderately affect the GSR observations. As application of the methodology developed in this work, we have re-evaluated the GSR time series between 1977 and 1991 obtained with two PYRs at IZO. By comparing with coincident GSR estimates from SD observations, we probe the high consistency of those measurements and their temporal stability. These results demonstrate that 1) the continuous-basis intercomparison of different GSR techniques offers important diagnostics for identifying inconsistencies between GSR data records, and 2) the GSR measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSR time series and complete worldwide distributed GSR data. The intercomparison and quality assessment of these different techniques have allowed to obtain a complete and consistent long-term global solar radiation series (1977–2015) at Izaña.


2017 ◽  
Vol 10 (3) ◽  
pp. 731-743 ◽  
Author(s):  
Rosa Delia García ◽  
Emilio Cuevas ◽  
Omaira Elena García ◽  
Ramón Ramos ◽  
Pedro Miguel Romero-Campos ◽  
...  

Abstract. A 1-year inter-comparison of classical and modern radiation and sunshine duration (SD) instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on 17 July 2014. We compare daily global solar radiation (GSRH) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer (MFRSR), a bimetallic pyranometer (PYR) and GSRH estimated from sunshine duration performed by a Campbell–Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given that the BSRN GSRH records passed strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the inter-comparison study. We obtain an overall root mean square error (RMSE) of  ∼  0.9 MJm−2 (4 %) for PYR and MFRSR GSRH, 1.9 (7 %) and 1.2 MJm−2 (5 %) for CS and CSD GSRH, respectively. Factors such as temperature, relative humidity (RH) and the solar zenith angle (SZA) have been shown to moderately affect the GSRH observations. As an application of the methodology developed in this work, we have re-evaluated the GSRH data time series obtained at IZO with two PYRs between 1977 and 1991. Their high consistency and temporal stability have been proved by comparing with GSRH estimates obtained from SD observations. These results demonstrate that (1) the continuous-basis inter-comparison of different GSRH techniques offers important diagnostics for identifying inconsistencies between GSRH data records, and (2) the GSRH measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSRH data time series and complete worldwide distributed GSRH data. The inter-comparison and quality assessment of these different techniques have allowed us to obtain a complete and consistent long-term global solar radiation series (1977–2015) at Izaña.


2014 ◽  
Vol 5 (1) ◽  
pp. 669-680
Author(s):  
Susan G. Lakkis ◽  
Mario Lavorato ◽  
Pablo O. Canziani

Six existing models and one proposed approach for estimating global solar radiation were tested in Buenos Aires using commonly measured meteorological data as temperature and sunshine hours covering the years 2010-2013. Statistical predictors as mean bias error, root mean square, mean percentage error, slope and regression coefficients were used as validation criteria. The variability explained (R2), slope and MPE indicated that the higher precision could be excepted when sunshine hours are used as predictor. The new proposed approach explained almost 99% of the RG variability with deviation of less than ± 0.1 MJm-2day-1 and with the MPE smallest value below 1 %. The well known Ångström-Prescott methods, first and third order, was also found to perform for the measured data with high accuracy (R2=0.97-0.99) but with slightly higher MBE values (0.17-0.18 MJm-2day-1). The results pointed out that the third order Ångström type correlation did not improve the estimation accuracy of solar radiation given the highest range of deviation and mean percentage error obtained.  Where the sunshine hours were not available, the formulae including temperature data might be considered as an alternative although the methods displayed larger deviation and tended to overestimate the solar radiation behavior.


2005 ◽  
Vol 12 (4) ◽  
pp. 451-460 ◽  
Author(s):  
A. R. Tomé ◽  
P. M. A. Miranda

Abstract. This paper presents a recent methodology developed for the analysis of the slow evolution of geophysical time series. The method is based on least-squares fitting of continuous line segments to the data, subject to flexible conditions, and is able to objectively locate the times of significant change in the series tendencies. The time distribution of these breakpoints may be an important set of parameters for the analysis of the long term evolution of some geophysical data, simplifying the intercomparison between datasets and offering a new way for the analysis of time varying spatially distributed data. Several application examples, using data that is important in the context of global warming studies, are presented and briefly discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Haixiang Zang ◽  
Qingshan Xu ◽  
Pengwei Du ◽  
Katsuhiro Ichiyanagi

A modified typical meteorological year (TMY) method is proposed for generating TMY from practical measured weather data. A total of eleven weather indices and novel assigned weighting factors are applied in the processing of forming the TMY database. TMYs of 35 cities in China are generated based on the latest and accurate measured weather data (dry bulb temperature, relative humidity, wind velocity, atmospheric pressure, and daily global solar radiation) in the period of 1994–2010. The TMY data and typical solar radiation data are also investigated and analyzed in this paper, which are important in the utilizations of solar energy systems.


Sign in / Sign up

Export Citation Format

Share Document