scholarly journals Comparison of Gene Expression Profiling in Sarcomas and Mesenchymal Stem Cells Identifies Tumorigenic Pathways in Chemically Induced Rat Sarcoma Model

ISRN Oncology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Kanya Honoki ◽  
Hiromasa Fujii ◽  
Yasuaki Tohma ◽  
Toshifumi Tsujiuchi ◽  
Akira Kido ◽  
...  

Mesenchymal stem cells (MSCs) are believed to be the cell of origin for most sarcomas including osteosarcoma and malignant fibrous histiocytoma (MFH/UPS). To identify the signaling pathways involved in sarcoma pathogenesis, we compared gene expression profiles in rat osteosarcoma and MFH cells with those in syngeneic rat MSCs. Analysis of genes that characterize MSCs such as CD44, CD105, CD73, and CD90 showed higher expression in MSCs compared to sarcomas. Pathways involved in focal and cell adhesion, cytokine-cytokine receptors, extracellular matrix receptors, chemokines, and Wnt signaling were down-regulated in both sarcomas. Meanwhile, DNA replication, cell cycle, mismatch repair, Hedgehog signaling, and metabolic pathways were upregulated in both sarcomas. Downregulation of p21Cip1 and higher expression of CDK4-cyclinD1 and CDK2-cyclinE could accelerate cell cycle in sarcomas. The current study indicated that these rat sarcomas could be a good model for their human counterparts and will provide the further insights into the molecular pathways and mechanisms involved in sarcoma pathogenesis.

Author(s):  
Ana M. Sotoca ◽  
Michael Weber ◽  
Everardus J. J. van Zoelen

Human mesenchymal stem cells have a high potential in regenerative medicine. They can be isolated from a variety of adult tissues, including bone marrow, and can be differentiated into multiple cell types of the mesodermal lineage, including adipocytes, osteocytes, and chondrocytes. Stem cell differentiation is controlled by a process of interacting lineage-specific and multipotent genes. In this chapter, the authors use full genome microarrays to explore gene expression profiles in the process of Osteo-, Adipo-, and Chondro-Genic lineage commitment of human mesenchymal stem cells.


Gene ◽  
2004 ◽  
Vol 340 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Shih-Chieh Hung ◽  
Ching-Fang Chang ◽  
Hsiao-Li Ma ◽  
Tain-Hsiung Chen ◽  
Larry Low-Tone Ho

2019 ◽  
Vol 120 (7) ◽  
pp. 11842-11852 ◽  
Author(s):  
Simone Ortiz Moura Fideles ◽  
Adriana Cassia Ortiz ◽  
Amanda Freire Assis ◽  
Max Jordan Duarte ◽  
Fabiola Singaretti Oliveira ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e83363 ◽  
Author(s):  
Dae Seong Kim ◽  
Myoung Woo Lee ◽  
Keon Hee Yoo ◽  
Tae-Hee Lee ◽  
Hye Jin Kim ◽  
...  

Gene ◽  
2020 ◽  
Vol 724 ◽  
pp. 144151 ◽  
Author(s):  
Femke Mathot ◽  
Nadia Rbia ◽  
Roman Thaler ◽  
Allen T. Bishop ◽  
Andre J. Van Wijnen ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jia-qi Wu ◽  
Lin-bo Mao ◽  
Ling-feng Liu ◽  
Yong-mei Li ◽  
Jian Wu ◽  
...  

Abstract Background The purpose of present study was to identify the differentially expressed genes (DEGs) associated with BMP-9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) by using bioinformatics methods. Methods Gene expression profiles of BMP-9-induced MSCs were compared between with GFP-induced MSCs and BMP-9-induced MSCs. GSE48882 containing two groups of gene expression profiles, 3 GFP-induced MSC samples and 3 from BMP-9-induced MSCs, was downloaded from the Gene Expression Omnibus (GEO) database. Then, DEGs were clustered based on functions and signaling pathways with significant enrichment analysis. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in cytoplasm, nucleus, and extracellular exosome signaling pathway. Results A total of 1967 DEGs (1029 upregulated and 938 downregulated) were identified from GSE48882 datasets. R/Bioconductor package limma was used to identify the DEGs. Further analysis revealed that there were 35 common DEGs observed between the samples. GO function and KEGG pathway enrichment analysis, among which endoplasmic reticulum, protein export, RNA transport, and apoptosis was the most significant dysregulated pathway. The result of protein-protein interaction (PPI) network modules demonstrated that the Hspa5, P4hb, Sec61a1, Smarca2, Pdia3, Dnajc3, Hyou1, Smad7, Derl1, and Surf4 were the high-degree hub nodes. Conclusion Taken above, using integrated bioinformatical analysis, we have identified DEGs candidate genes and pathways in BMP-9 induced MSCs, which could improve our understanding of the key genes and pathways for BMP-9-induced osteogenic of MSCs.


2008 ◽  
Vol 103 (4) ◽  
pp. 1198-1210 ◽  
Author(s):  
Joseph G. Hacia ◽  
C. Chang I. Lee ◽  
Daniel F. Jimenez ◽  
Mazen W. Karaman ◽  
Vincent V. Ho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document