scholarly journals A Proposal for Architectural Framework Using Internet of Things with Fog Computing for an Air Quality Monitoring System

Author(s):  
Aarti Rani ◽  

Air Monitoring becomes a systematic approach for sensitivity and finding out the circumstances of the atmosphere. The major concern of air quality monitoring is to measure the concentration of pollution and other important parameter related to the contamination and provides information in real-time to make decisions at right time to cure lives and save the environment. This paper proposes an Architectural Framework for the air quality monitoring system based on Internet-of-Things (IoT) and via Fog computing techniques with novel methods to obtain real-time and accurate measurements of conventional air quality monitoring. IoT-based real-time air pollution monitoring system is projected to at any location and stores the measured value of various pollutants over a web server with the Internet. It can facilitate the process and filter data near the end of the IoT nodes in a concurrent manner and improving the Latency issue with the quality of services.

2017 ◽  
Vol 13 (08) ◽  
pp. 79 ◽  
Author(s):  
Nagarjuna Telagam ◽  
Nehru Kandasamy ◽  
Nagendra Prasad G ◽  
Menakadevi Nanjundan

A ZigBee based wireless sensor network is implemented in this paper which is of low-cost solar-powered air quality monitoring system. The main objective of the proposed architecture is to interfacing various sensors to measure the sensor analog data and displayed in LabVIEW on the monitor using the graphical user interface (GUI).  The real time ambient air quality monitoring in smart cities is of greater significance for the health of people. The wireless network sensor nodes are placed at different traffic signals in the smart cities which collect and report real-time data on different gases which are present in the environment such as carbon monoxide (CO), nitrogen dioxide (NO2), methane (CH4) and humidity. The proposed system allows smart cities to monitor air quality conditions on a desktop/laptop computer through an application designed using graphical programming based LabVIEW software and provides an alert if the air quality characteristics exceed acceptable levels. The sensor network was successfully tested on the campus of the institute of aeronautical engineering, Hyderabad. The sensor data are indicated by different indicators on the front panel of LabVIEW and also different charts are plotted with respect to time and amplitude which explains the severity of polluted areas.


2021 ◽  
Author(s):  
Tabbsum Hanif Mujawar ◽  
P. Prabhkar ◽  
Vijendra Chaudhary ◽  
Lalasaheb Deshmukh

Owing to enhancement in technology there is inclination in miniaturization of devices which demands to build up stumpy expensive sensor, least powered and hardy devices. Accordingly, Wireless Sensor Networks (WSN) has gained significance in diverse applications: Farming, household, industries and environmental monitoring. Wireless sensor network system worn to monitor and control the air quality of an environment is developed. The air pollution monitoring system that measures temperature, humidity, SPM (Suspended Particulate Matter), NOx and CO are proposed. The conventional air quality monitoring system, prescribed by the Pollution Control Department, is tremendously pricey. Analytical measuring paraphernalia is lavish, time and power overriding, and can seldom be used for air quality exposure in real time. Endeavor has been completed to develop state of art monitoring system using commercially available standard pollutant gas sensors incorporated into a mote. An exact program made with LabVIEW is formed to constitute the measurements of sensing used in the established network. Remote monitoring of the system is made possible using IoT.


2021 ◽  
Vol 12 (3) ◽  
pp. 151
Author(s):  
Komang Try Wiguna Adhitya Primantara ◽  
Putu Wira Bhuana ◽  
Kyle Doran

Environmental pollution is a global issue that occurs at this time. It is caused by various human activities that produce pollutants that endanger their lives. By utilizing current technology, it is possible to design a Water and Air Quality Monitoring System based on the Internet of Things to monitor air and water quality quickly and in real-time in the surrounding environment. The users can access this system via the web and Android / IOS mobile applications that display the data obtained by the sensor in the form of real-time graphics of water and air conditions. In addition, this system consists of several sensor nodes in charge of providing field data regarding the parameters used as the basis for assessing water and air quality according to the applicable standards in Indonesia. Sensors for water using a Turbidity Sensor, DS18B20 Sensor, PH Sensor, DHT 11, and TDS (Total Dissolved Solids) Sensor. Sensors for air consist of the DHT11 sensor, the MQ-7sensor, the MQ-135 sensor, and the dust sensor GP2Y1010AU0F.


Author(s):  
Adnan Rafi Al Tahtawi ◽  
Erick Andika ◽  
Maulana Yusuf ◽  
Wildan Nurfauzan Harjanto

Air pollution is one of problems causing global warming that is currently taking a place. Several air quality monitoring devices usually located at the city center are only limited to display data at one point. Therefore, a mobile device to monitor air quality is needed so as to enable the monitoring in several points. This paper aims to design an air quality monitoring system based on quadrotor Unmanned Aerial Vehicle (UAV) and Internet-of-Things (IoT) technology. The sensor system is designed to detect CO, CO2, air quality, and temperature variables. This sensor systems was then integrated with quadrotor in order to make the monitoring process can be carried out at various points. Quadrotor was designed using Ardupilot Mega (APM) 2.6 as the flight controler. Measurement data from system sensor was transmitted wirelessly using internet network via Wi-Fi module. Based on the test results, the sensor system was able to detect concentration of several test gas and was linear to the output voltage. Quadrotor orientation parameters at takeoff produced transient responses in less than 1 second. The air pollution sensor parameter data could also be displayed every 10 seconds on the ThingSpeak and ThingView interfaces, and could be mapped based on the data retrieval coordinates.


Author(s):  
Sai Surya Kiran Pokala ◽  
V. Panchami ◽  
Kelavath Jaisingh ◽  
Sandeep Kumar Yedla

2020 ◽  
Vol 8 ◽  
pp. 34-38
Author(s):  
Samuel Kristiyana ◽  
Aldi Rinaldi

The monitoring system in this study is a system created to find out data about temperature, humidity, and air quality in a room. This research develops a monitoring system that uses the internet so that the monitoring range becomes wider. By utilizing the Internet of Things (IoT) technology using the thingspeak application integrated with the NodeMCU module ESP8266 features an LM35 temperature sensor that functions as a temperature detector, a DHT11 sensor as a humidity sensor, and an MQ-135 sensor as an air quality detector. These sensors send input signals to the NodeMCU ESP8266 module for processing. The wifi module contained in the NodeMCU ESP8266 module sends the value read by the sensor to the IoT Thingspeak platform which records logging data in graphical form. This system has the potential to be used as an indoor air quality monitoring system to raise awareness about the importance of healthy air quality


Sign in / Sign up

Export Citation Format

Share Document