scholarly journals The Impact of Prescribed Fire on Moth Assemblages in the Boston Mountains and Ozark Highlands, in Arkansas

Author(s):  
Erin E Guerra ◽  
Cristina Blanco ◽  
Jorista Garrie
2021 ◽  
pp. 1-18
Author(s):  
J. Kelly Hoffman ◽  
R. Patrick Bixler ◽  
Morgan L. Treadwell ◽  
Lars G. Coleman ◽  
Thomas W. McDaniel ◽  
...  

2021 ◽  
Author(s):  
John P McGuire ◽  
John S Kush ◽  
J Morgan Varner ◽  
Dwight K Lauer ◽  
J Ryan Mitchell

Abstract Efforts to restore longleaf pine (Pinus palustris Mill.) in the southeastern US require substantial artificial regeneration. Once established, important questions remain about when to introduce fire. We investigated the impact of initial planting density on tree branching and how prescribed fire might interact with tree architecture and survival. A particular focus was on how prescribed fires could “prune” lower branches. Lower density plantings (897 trees ha−1) had more and larger live lower branches than higher density plantings (2,243 trees ha−1). Fire was effective in pruning lower branches regardless of season burned, but fire in the growing season was more effective at pruning. Branches up to a height of 1.5 to 2 m were killed by fire. Fire applied in August caused greater damage with more needles scorched and/or consumed and more stem char. Prescribed fire did not impact longleaf pine tree survival. In general, fire applied to longleaf pine facilitated pruning lower branches that affect long-term wood quality, an additional argument for its utility in restoration and management of these ecosystems.


2020 ◽  
Author(s):  
◽  
Shengwu Duan

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI--COLUMBIA AT REQUEST OF AUTHOR.] Oak-dominated forests in the Ozarks Highlands of Arkansas and Missouri have been suffering severe oak decline and this became a chronic problem since the late 1970s. Such decline became increasingly severe as numerous dense oak forests in this region approaching physiological maturity. Repeated droughts and insect outbreaks in the Ozarks Highlands from 1998 to 2015 accelerate the decline process and resulted in increased mortality of the oaks, particularly those in red oak group. Given these concerns, the overall objective of this dissertation was to conduct a regional scale assessment to evaluate and predict the impact of drought and insects on the oak forests under changing climate. This dissertation contained three main objectives: 1) to evaluate the drought effect on forest growth phenology and productivity by using spatially-explicit drought indices and land surface phenology techniques to capture oak, pine and mixed oak-pine forests' responses to repeated droughts; 2) to develop a climate sensitive biotic disturbance agent (BDA) module in forest landscape modeling framework to quantify the relative importance in determining the insect disturbance regimes under the warming climate; and 3) to predict the effects of insect disturbance, climate change and their interactions on forest composition under alternative climate and insect disturbance scenarios. The dissertation provided a methodology to disassemble the spatial and temporal variation of drought conditions in the Ozark Highlands and provided new insights into improving drought resistance and recovery capacity of forests with different species under climate change. The results from this dissertation also helped to understand the importance of vegetation feedback in predicting inset disturbance regimes under a warming climate as they may mediate or even reverse the expectation of increased insect disturbance in this region. In addition, the projections of how tree species will response to insect disturbance will benefit decision making in silvicultural prescriptions and longterm management plans in the Ozark Highlands.


Allergy ◽  
2019 ◽  
Vol 74 (10) ◽  
pp. 1989-1991 ◽  
Author(s):  
Mary Prunicki ◽  
Rodd Kelsey ◽  
Justin Lee ◽  
Xiaoying Zhou ◽  
Edward Smith ◽  
...  

2018 ◽  
Author(s):  
Brandon M. Lind ◽  
Malcolm P. North ◽  
Patricia E. Maloney ◽  
Andrew J. Eckert

AbstractHistorically, frequent, low-severity fires in dry western North American forests were a major driver of ecological patterns and processes, creating resilient ecosystems dominated by widely-spaced pine species. However, a century of fire-suppression has caused overcrowding, altering forest composition to shade-tolerant species, while increasing competition and leaving trees stressed and susceptible to pathogens, insects, and high-severity fire. Exacerbating the issue, fire incidence is expected to increase with changing climate, while fire season has been observed to begin earlier and last longer than historic trends. Forest thinning and prescribed fire have been identified as important management tools to mitigate these risks. Yet little is known of how thinning, fire, or their interaction affect contemporary evolutionary processes of constituent pine species that influence fitness and play an important role in the opportunity for selection and population persistence. We assessed the impact of widely used fuel reduction treatments and prescribed fire on fine-scale gene flow on an ecologically important and historically dominant shade-intolerant pine species of the Sierra Nevada, Pinus lambertiana Dougl. Treatment prescription (no-thin-no-fire, thin-no-fire, and fire-and-thin) was found to differentially affect both fine-scale spatial and genetic structure as well as effective gene flow in this species. Specifically, the thin-no-fire prescription increases genetic structure (spatial autocorrelation of relatives) between adults and seedlings, while seed and pollen dispersal increase and decrease, respectively, as a function of increasing disturbance intensity. While these results may be specific to the stands at our study site, they indicate how assumptions relating to genetic effects based on spatial structure can be misleading. It is likely that these disequilibrated systems will continue to evolve on unknown evolutionary trajectories. The long-term impacts of management practices on reduced fitness from inbreeding depression should be continually monitored to ensure resilience to increasingly frequent and severe fire, drought, and pest stresses.


2015 ◽  
Vol 24 (5) ◽  
pp. 690 ◽  
Author(s):  
Holly Sitters ◽  
Julian Di Stefano ◽  
Fiona J. Christie ◽  
Paul Sunnucks ◽  
Alan York

Increasingly, patchy prescribed fire of low severity is used by land managers to mitigate wildfire risk, but there are relatively few experimental studies on the effects of low-severity fire on fauna. We used a before–after control–impact experiment to examine avian responses to prescribed fire at two scales in topographically variable, tall-open eucalypt forest in south-east Australia. We surveyed birds at control and impact areas twice before and twice after fire, and applied mixed models to investigate responses of avian turnover, richness and the occurrence of selected species. Approximately half of the impact area was burnt and topographic variation generated a finger-like configuration of burnt patches on ridges and unburnt patches in gullies. Our findings at the smaller scale (0.8 ha) indicated that the fire resulted in increased bird diversity because a patchwork of burnt and unburnt areas provided a mosaic of distinct successional states in which different species occurred. Additionally, we found that the effect of fire on species richness and occurrence was a function of the presence of unburnt topographic refuges. In contrast, we found no compelling evidence to suggest that birds responded to the fire at the larger scale (400 ha). We conclude that application of low-severity fire in a patchy manner enhanced avian diversity and facilitated the persistence of the birds detected in pre-fire surveys. Although the levels of patchiness required to sustain diverse taxa warrant further study, our findings highlight the importance of formally incorporating patchiness into prescribed burning for the ecologically sensitive management of contemporary landscapes.


1997 ◽  
Vol 75 (9) ◽  
pp. 1518-1526 ◽  
Author(s):  
Edward W. Bork ◽  
Robert J. Hudson ◽  
Arthur W. Bailey

Wild ungulate herbivory and prescribed fire can modify the vegetational characteristics of Populus forest plant communities and alter their potential to meet conservation objectives. Effective management of these areas depends on understanding the impact of these disturbances across natural landscapes. Our objective was to quantify various overstory and understory plant community characteristics in the Populus forests in and around Elk Island National Park, Alberta, under different disturbance regimes. Vegetation from 36 sites, stratified by four topographic positions and three historical treatment combinations of fire and native ungulate herbivory, were sampled. In these sites, we quantified tree density, basal area and cover, understory species richness and diversity, shrub density and height, as well as grass, forb, and browse annual net primary production (ANPP). Although tree canopy characteristics were similar under all three disturbances, small-diameter trees (< 5 cm) were nearly absent within the Park. The reference area outside the Park had greater browse-leaf and -twig ANPP, as well as shrub height, but lower grass ANPP. Inside the Park, burned areas had greater shrub density and ANPP of grass and forb components. Topographically, tree stand basal area, cover, and shrub height were greatest on the northern slope, as was browse-leaf ANPP. Species diversity and richness were relatively greater on the toe slope. Within the plant community variables examined, the disturbances and positions frequently interacted, particularly the burned treatment with the crest position and level of herbivory with the south-facing and north-facing slopes. The structure, composition, and ANPP of Populus forest in Elk Island National Park has been significantly affected by both ungulate herbivory and prescribed burning. These factors, along with topography, influence the vegetation and are consequently important for management of the park's habitat and ungulate populations. Key words: ANPP, national park, prescribed fire, structure, topography, ungulate herbivory.


2012 ◽  
Vol 39 (8) ◽  
pp. 731 ◽  
Author(s):  
Ben Hope

Context Prescribed burning is routinely performed within the Sydney Basin as a method of fire-hazard mitigation. Despite the widespread use of prescribed fire, knowledge of the impact of prescribed fire on most fauna species remains unclear. This is particularly the case for bandicoot species. Aims To determine the impact of a low-intensity prescribed fire on the survival of the long-nosed bandicoot, Perameles nasuta, and the southern brown bandicoot, Isoodon obesulus obesulus (hereafter abbreviated to I. obesulus), immediately after the fire and at 5 weeks, 5 months and 13 months following the fire. To document the spatial ecology and nesting requirements of I. obesulus and P. nasuta before and after fire. Methods One I. obesulus and seven P. nasuta (five female and two male) individuals were radio-tracked. Animals were tracked before, during and following a hazard-reduction burn to assess the impact of fire on home range, survival and nesting behaviour. Key results Post-fire survival of P. nasuta and I. obesulus was high and the population remained stable up to 5 months following the fire. All animals tracked within the burn area (three female P. nasuta) survived the passage of fire. The home range for one male I. obesulus was found to be 2.35 ha 50% kernel-density estimate (KDE) and 12.35 ha 95% KDE. Female P. nasuta (n = 5) had a home range of 1.3 ha ± 0.2 s.e. 50% KDE and 7.5 ha ± 1.7 s.e. 95% KDE. Male P. nasuta (n = 1) had a home range of 1.1 ha 50% KDE and 6.5ha 95% KDE. Nesting for both species tended to occur in dense vegetation, with a slight shift to non-combustible refuge sites post-fire. Animals tended to maintain exclusive and relatively stable core home ranges, although overlap of non-core home ranges was common. Conclusions The survival of bandicoots following a low-intensity hazard-reduction fire was high in the short term; however, further research is required to determine how the components of a fire regime affect native species, in particular peramelids. Implications Hazard-reduction fires should be used with caution to manage the isolated and endangered northern Sydney population of I. obesulus, so as to ensure the persistence of this species.


2017 ◽  
Author(s):  
◽  
Kathryn Marie Womack

Restoration of savanna and woodland ecosystems are high priorities for state and federal agencies in the Midwest and prescribed fire and mechanical tree thinning are the main tools used to restore these communities. Information on how bat species and their insect prey respond to restoration is needed to guide management decisions for species of conservation concern. There is a heightened urgency to collect demographic data during the 07 maternity season due to white-nose syndrome (WNS) and other threats to bat populations. Our objectives were to: 1) evaluate the performance of the n-mixture model for repeated count data and the general multinomial Poisson model for removal sampling (n-mixture model and removal model, respectively) for estimating bat abundance from simulated mist-net capture data, 2) determine the relationships between prescribed fire, vegetation structure, and site characteristics on insect abundance, and 3) determine the effect of restoration, vegetation structure, and landscape factors on bat species abundances across a gradient of savannas, woodlands, and non-managed forest in the Ozark Highlands of Missouri. We fit the n-mixture and removal models in the UNMARKED package in R, and simulated datasets that examined how both models would perform based on potential study design constraints, various probabilities of detection, and population sizes. We simulated 4 scenarios each based on 85 iterations on 1000 randomly generated datasets. We calculated relative bias (RB), mean absolute error (MAE), and mean absolute percent error (MA%E) from model predictions to evaluate model performance. Relative bias, MAE, and MA%E decreased as detection probability and bat abundance increased. Model fit was acceptably low when bat abundance was greater than 70, and detection probability was greater than 0.5 for n-mixture models. The removal model outperformed the n-mixture model in all scenarios except when detection probability was 0.05. The removal model correctly estimated bat abundance for 50 percent of simulated scenarios versus the n-mixture model's 3 out of 43. Utilization of the removal model using data from repeated mist-net surveys may allow resource managers and conservationists to better quantify how resource management and landscape composition affect bat species abundance and overall populations. We provide managers with evidence of the utility of the removal model to estimate bat abundances from repeated mist-net survey data while incorporating meaningful habitat, management, and landscape covariates. Furthermore, documenting changes in populations sizes during the 07 maternity season will enable improved conservation practices for species management. We sampled insects at 8 plots in 2014, and 4 plots in 2015 and 2016 within 250 m of each mist-net sites. We fit generalized linear mixed effects models to evaluate a priori hypotheses on the effects of savanna woodland restoration on insect abundances. Prescribed fire did affect insect abundances at plots surrounding each mist-net site. Insect plots burned 2 or 3 times within the last ten years had higher insect abundances for some insect response groups compared to non-managed plot. Year since a plot burned also affected insect abundances, with sites burned more recently within 3 years had lower insect abundances for some insect response groups and in others -- we found no relationship. We only evaluated insect Orders and did not examine specific families or species richness to understand how management affects diversity of insects. Temperature was the best predictor of insect abundances at plots for most response variables, and we found support for site aspect, and tree density by size classes. Managers should be mindful that different insect groups had different responses to prescribed fire, therefore a diversity of practices in the landscape will provide for more diverse insect prey Overall, restoration practices did not have a lasting negative effect on insect abundances, and some positive effects. We conducted mist-net surveys at 89 sites across the Ozark region of Missouri from 2014-2016, and collected demographic data on 4 bat species captured: northern longeared bat (Myotis septentrionalis), tri-colored bat (Perimyotis subflavus), evening bat (Nycticeius humeralis), and eastern red bat (Lasiurus borealis). We fit the removal model to evaluate multi-scale a priori hypotheses on the effects of restoration, landscape factors, and prey availability at sites that potentially affect either the detection or abundance of bats at sites. Top models for all four bat species highlighted the importance of evaluating multiple spatial scales in ecological studies. Overall, we found no evidence that restoration negatively affected any of the bat species investigated; although, northern long-eared bats abundance presented stronger positive relationship to percent forest and increased tree densities than to percent savanna-woodlands within 1km. Our study was the first to predict abundances from repeated count data from mist-net surveys during the 07 maternity season and accounting for varying detection probabilities. We did not find support for relationships between potential insect prey and bat abundances. Eastern red bats, tricolored, and evening bat abundances were positively related to prescribed fire and negatively to tree densities or percent canopy and therefore should respond positively to savanna and woodland restoration. Northern long-eared bat had higher abundances at sites with higher tree densities of pole and saw timber and eastern red bat and northern long-eared bat abundances was positively related to sites with higher percentage of forest and savanna-woodland habitat within 1 km of mist-net sites. Evening bat abundances was the greatest at sites that had higher fire frequencies within 1 km of a mist-net site. We suggest managers consider the tradeoffs among species in these abundance relationships when planning management and that restoration of savanna and woodlands, when part of a larger management goal to create heterogeneity of forest types, will likely promote higher abundances of all four bat species.


Sign in / Sign up

Export Citation Format

Share Document