UL 9540A Installation Level Tests with Outdoor Lithium-ion Energy Storage System Mockups

2021 ◽  
Author(s):  
Adam Barowy ◽  
Alex Klieger ◽  
Jack Regan ◽  
Mark McKinnon

This report covers results of experiments conducted to obtain data on the fire and deflagration hazards from thermal runaway and its propagation through energy storage systems (ESS). The UL 9540A test standard provides a systematic evaluation of thermal runaway and propagation in energy storage system at cell, module, unit, and installation levels. The data from this testing may be used to design fire and explosion protection systems needed for safe siting and installation of ESS. In addition to temperature, pressure, and gas measurement instruments installed inside of the container, fire service portable gas monitors were placed at locations inside and outside the storage container during the experiments to assess their ability to detect products of thermal runaway and inform fire service size-up decisions. Review section 2.2.3 Fire Service Size-up Equipment to learn more. This research demonstrates a clear need for responding firefighters to have early access to data from instrumentation installed within an ESS, particularly gas measurement instrumentation, available through a monitoring panel. Additionally, it highlights the importance of communication between responding firefighters and personnel responsible for management of the ESS, who can aid in complete evaluation of system data to develop a more clear picture of system status and potential hazards.

2021 ◽  
Vol 35 (5) ◽  
pp. 1-8
Author(s):  
Joon-Hyuk Lee ◽  
Sung-Ho Hong ◽  
Heung-Su Lee ◽  
Moon-Woo Park

A main cause of fires and explosions in lithium-ion batteries is the generation of combustible gases by them, and when a large number of batteries are densely packed, like in an Energy Storage System, there is a high risk of thermal runaway and fire propagation. Currently, many studies are being conducted worldwide to predict and prevent the generation of combustible gases, and thermal runaway in lithium-ion batteries, but they are still in progress. Therefore, in this study, we analyzed the gases generated before and after thermal runaway in lithium ion batteries, to prepare a basis for reducing the risk of thermal runaway. We aimed to establish the basis for prevention by early detection in the event of thermal runaway, by understanding the type and characteristics of the generated gases. For the experiment, lithium ion batteries were classified in terms of appearance (cylindrical, prismatic, pouch type), and cathode materials (NCM, NCA, LFP). The gases generated was measured against time. An FT-IR analyzer was used for gas measurement, and a separate hydrogen sensor was installed in the chamber to analyze changes in the types of gas, and measure the mass of the lithium ion battery over time. In the experiment, CO2 and CO were generated the most during thermal runaway in all lithium-ion batteries. Thereafter, CO2 increased, and CO decreased in the prismatic and pouch types, and both CO2 and CO increased in the cylindrical type. HF (a toxic gas), and H2 having a wide explosive range, were also generated, and the concentrations of these gases were inversely proportional to each other.


Author(s):  
Alexander Headley ◽  
Benjamin Schenkman ◽  
Keith Olson ◽  
Laurence Sombardier

Abstract The Natural Energy Laboratory of Hawaii Authority’s (NELHA) campus on The Island of Hawai’i supplies resources for a number of renewable energy and aquaculture research projects. There is a growing interest at NELHA to convert the research campus to a 100% renewable, islanded microgrid to improve the resiliency of the campus for critical ocean water pumping loads and to limit the increase in the long-term cost of operations. Currently, the campus has solar array to cover some electricity needs but scaling up this system to fully meet the needs of the entire research campus will require significant changes and careful planning to minimize costs. This study will investigate least-cost solar and energy storage system sizes capable of meeting the needs of the campus. The campus is split into two major load centers that are electrically isolated and have different amounts of available land for solar installations. The value of adding an electrical transmission line if NELHA converts to a self-contained microgrid is explored by estimating the cost of resources for each load center individually and combined. Energy storage using lithium-ion and hydrogen-based technologies is investigated. For the hydrogen-based storage system, a variable efficiency and fixed efficiency representation of the electrolysis and fuel cell systems are used. Results using these two models show the importance of considering the changing performance of hydrogen systems for sizing algorithms.


2021 ◽  
Author(s):  
Mohammad Hassan Amir Jamlouie

Over the last century, the energy storage industry has continued to evolve and adapt to changing energy requirements. To run an efficient energy storage system two points must be considered. Firstly, precise load forecasting to determine energy consumption pattern. Secondly, is the correct estimation of state of charge (SOC). In this project there is a model introduced to predict the load consumption based on ANN implemented by MATLAB. The Designed intelligent system introduced for load prediction according to the hypothetical training data related to two years daily based load consumption of a residential area. For another obstacle which is accurate estimation of SOC, two separate models are provided based on ANN and ANFIS for Lithium-ion batteries as an energy storage system. There are several researches in this regard but in this project the author makes an effort to introduce the most efficient based on the MSE of each performance and as a result the method by ANN is found more accurate.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1402 ◽  
Author(s):  
Robert Małkowski ◽  
Marcin Jaskólski ◽  
Wojciech Pawlicki

This paper presents research on a hybrid photovoltaic-battery energy storage system, declaring its hourly production levels as a member of a balancing group submitting common scheduling unit to the day-ahead market. It also discusses the variability of photovoltaic system generation and energy storage response. The major research questions were whether the operation of a hybrid photovoltaic-battery energy storage system is viable from the technical and economic viewpoint and how to size battery energy storage for that purpose. The DIgSILENT PowerFactory environment was used to develop the simulation model of postulated hybrid system. Then, tests were conducted on real devices installed in the LINTE^2 laboratory at Gdańsk University of Technology, Poland. Firstly, power generation in the photovoltaic system was modeled using hardware in the loop technique and tested in cooperation with emulated photovoltaic and real battery energy storage system (lithium-ion battery, 25 kWh). Secondly, a real photovoltaic power plant (33 kW) and real battery energy storage were applied. The results obtained from laboratory experiments showed that market operation of hybrid photovoltaic-battery energy storage system is feasible. However, developing a control strategy constitutes a great challenge, as the operator is forced to intervene more frequently than the simulation models indicate in order to keep the parameters of battery storage within accepted ranges, especially in view of a sudden weather breakdown. Levelized cost of electricity from photovoltaic-battery energy storage system varied from 314 to 455 $/MWh, which has proven to be from two to three times higher than the current annual average day-ahead market price in Poland.


Sign in / Sign up

Export Citation Format

Share Document