scholarly journals Pinus canariensis plant regeneration through somatic embryogenesis

2020 ◽  
Vol 29 (1) ◽  
pp. eSC05
Author(s):  
Ander Castander-Olarrieta ◽  
Paloma Moncaleán ◽  
Itziar A. Montalbán

Aim of the study: To develop an efficient method to regenerate plants through somatic embryogenesis of an ecologically relevant tree species such as Pinus canariensis.Area of study: The study was conducted in the research laboratories of Neiker-Tecnalia (Arkaute, Spain).Material and methods: Green cones of Pinus canariensis from two collection dates were processed and the resulting immature zygotic embryos were cultured on three basal media. The initiated embryogenic tissues were proliferated testing two subculture frequencies, and the obtained embryogenic cell lines were subjected to maturation. Germination of the produced somatic embryos was conducted and acclimatization was carried out in a greenhouse under controlled conditions.Main results: Actively proliferating embryogenic cell lines were obtained and well-formed somatic embryos that successfully germinated were acclimatized in the greenhouse showing a proper growth.Research highlights: This is the first report on Pinus canariensis somatic embryogenesis, opening the way for a powerful biotechnological tool for both research purposes and massive vegetative propagation of this species.Keywords: acclimatization; Canary Island pine; micropropagation; embryogenic tissue; somatic embryo.Abbreviations used: embryogenic tissue (ET); established cell line (ECL);  somatic embryogenesis (SE); somatic embryos (Se’s).

2011 ◽  
Vol 77 (3) ◽  
pp. 189-199 ◽  
Author(s):  
Teresa Hazubska-Przybył ◽  
Krystyna Bojarczyk

Somatic embryogenesis was studied in four spruce species (<em>Picea abies</em>, <em>P. omorika</em>, <em>P. pungens</em> 'Glauca' and <em>P. brewenana</em>) to determine if this method can be used for in vitro propagation of coniferous trees. The highest frequency of initiation of embryogenic tissue was obtained when mature zygotic embryos were used as explants. It ranged then from 10.8% (<em>P. brewenana</em>) to 23.75% (<em>P. omorika</em> and <em>P. pungens</em> 'Glauca'). The frequency of embryogenic tissue initiation was strongly affected by medium composition, i.e. addition of appropriate auxins (2,4-D, NAA, Picloram) and sucrose concentration (10-20 g<sup>-1</sup>"1). A lower frequency was obtained in <em>Picea omorika</em> (10%) when megagametophytes (endosperms with immature zygotic embryos) were used as explants. No emryogenic tissue was produced from hypocotyls, cotyledons and needles. A satisfactory frequency was achieved with the use of somatic embryos of <em>Picea abies</em> (30%). The proliferation of embryogenic cell lines of spruces was affected by medium type. The experiments resulted in production of somatic plantlets of <em>P. abies</em> and <em>P. omorika</em>. This enables the application of this method of spruce micropropagation for genetic and breeding research or for nursery production.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1210
Author(s):  
Terezia Salaj ◽  
Katarina Klubicová ◽  
Bart Panis ◽  
Rony Swennen ◽  
Jan Salaj

Initiation of somatic embryogenesis from immature zygotic embryos, long-term maintenance of embryogenic tissue in vitro or by cryopreservation, as well as maturation, of somatic embryos of Abies alba Mill. are reported in this study. For the initiation of embryogenic tissues, a DCR medium containing different types of cytokinins (1 mg.L−1) were tested. During three consecutive years, 61 cell lines were initiated out of 1308 explants, with initiation frequencies ranging between 0.83 and 13.33%. The type of cytokinin had no profound effect on the initiation frequency within one given year. Microscopic observations revealed presence of bipolar somatic embryos in all initiated embryogenic tissues. Besides the typical bipolar somatic embryos, huge polyembryonal complexes, as well as “twin” embryos, were observed. Maturation of somatic embryos occurred on a DCR medium supplemented by abscisic acid (10 mg.L−1), polyethylene glycol (PEG-4000, 7.5%) and 3% maltose. The maturation capacity was cell-line dependent. All of the four tested cell lines produced cotyledonary somatic embryos, though at different quantities, of 16 to 252 per g of fresh weight. After germination, seedlings developed, but their further growth soon stopped after the formation of a resting bud. Altogether, seven cell lines were cryopreserved, using the slow-freezing technique. After rewarming, all tested cell lines showed regrowth rates between 81.8 and 100%.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Itziar A. Montalbán ◽  
Ander Castander-Olarieta ◽  
Cathy L. Hargreaves ◽  
Keiko Gough ◽  
Cathie B. Reeves ◽  
...  

Development of hybrid pines of Pinus radiata D. Don for commercial forestry presents an opportunity to diversify the current resource of plant material. Climate change and different land uses pose challenges, making alternative species necessary to guarantee wood and non-wood products in the future. Pinus radiata var. cedrosensis × Pinus attenuata hybrid possesses different attributes, such as tolerance to drought conditions, better growth and resistance to snow damage at higher altitudes, and more importantly, different wood quality characteristics. Embryogenic cell lines were successfully initiated reciprocal hybrids using as initial explants megagametophytes, excised zygotic embryos and excised zygotic embryos plus nurse culture. However, the questions raised were: does the initiation environment affect the conversion to somatic plantlets months later? Does the mother tree or the cross have an effect on the conversion to somatic plantlets? In the present work we analysed the maturation rate, number of somatic embryos, germination rate, and the ex-vitro growth in cell lines derived from different initiation treatments, mother tree species, and crosses. Differences were not observed for in vitro parameters such as maturation and germination. However, significant differences were observed due to the mother tree species in relation with the ex-vitro growth rates observed, being higher those in which P. radiata acted as a mother. Moreover, embryogenic cell lines from these hybrids were stored at −80 °C and regenerated after one and five years.


2000 ◽  
Vol 30 (12) ◽  
pp. 1867-1876 ◽  
Author(s):  
R E Percy ◽  
K Klimaszewska ◽  
D R Cyr

A multiyear program was undertaken to develop a somatic embryogenesis system for clonal propagation of western white pine (Pinus monticola Dougl.). Developing seeds were used to initiate embryogenic lines from families used in blister-rust (Cronartium ribicola J.C. Fisch.) resistance breeding programs in British Columbia. The most responsive seeds contained zygotic embryos ranging in development from late cleavage polyembryony to the early dominance stage. Overall, 14 of 15 open-pollinated families produced embryogenic lines. The best results (0.8-6.7% initiation) were obtained using modified Litvay medium with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BA) at 2.25 µM. Proliferation of embryogenic tissue was enhanced by culturing tissue as a thin layer on filter paper supports. Approximately 300 lines representing 18 open- and control-pollinated families were cryopreserved. The highest number of mature somatic embryos was obtained on maturation medium containing 120 µM abscisic acid, 180 mM sucrose, and 1.0% gellan gum. Of 61 lines tested on this medium, 77% produced mature somatic embryos. In vitro germination and early growth occurred at a high frequency (90-95%), and plants from 45 genotypes were subsequently transferred to a greenhouse.


Biologia ◽  
2009 ◽  
Vol 64 (6) ◽  
Author(s):  
Božena Vooková ◽  
Andrej Kormuťák

AbstractPossibility to improve plantlet regeneration from Abies alba Mill. open-pollinated families of 4 trees in Dobroč primeval and 3 trees in managed forest was studied. Immature zygotic embryos were cultured in order to obtain initiation of embryogenic tissue. Totally, three from the families of the managed forest (57%) and two from the primeval families (50%) responded to initiation condition. Initiation frequencies among families ranged in managed forest: 4.5–56.2%, primeval: 5.4–16.8%. Maturation ability was shown by 77.3% of the primeval cell lines, 36.4% cell lines produced cotyledonary somatic embryos. In managed forest, in 62.5% of the cell lines embryo maturation was observed. Cotyledonary embryos developed only in 15% of cell lines. Regenerants were obtained from 9 cell lines of primeval and from 6 cell lines of managed forest. Biochemically, the mature somatic embryos were characterized by the variation in soluble and protein profiles. The corresponding profiles of insoluble proteins exhibited uniform pattern. The variation was characteristic for somatic embryos of individual cell lines rather than for the primeval and managed stands. Enzymatically, no indications were obtained supporting higher metabolic potential of somatic embryos derived from zygotic embryos of silver fir primeval stand than in somatic embryos originating from the trees of managed stand.


2007 ◽  
Vol 59 (3) ◽  
pp. 199-202 ◽  
Author(s):  
Dragana Stojicic ◽  
Branka Uzelac ◽  
Dusica Janosevic ◽  
Ljubinka Culafic ◽  
Snezana Budimir

The potential for somatic embryogenesis in zygotic embryo and megagametophyte cultures of Pinus heldreichii was examined. Somatic embryogenesis was initiated from megagametophytes containing immature zygotic embryos at early stages of development. An induction frequency of up to 6.7% was obtained on Gresshoff and Doy medium in the presence of 2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/l benzyladenine (BA). Formation and further proliferation of embryogenic tissue were achieved upon transfer of explants to a medium with reduced levels of growth regulators. Somatic embryos are being cultured for further development. .


Author(s):  
Iraida N. Tretyakova ◽  
◽  
Maria E. Park ◽  
Angelica P. Pakhomova ◽  
Irina S. Sheveleva ◽  
...  

The biotechnology of somatic embryogenesis in in vitro culture is the most promising direction in the reproduction of conifers. The use of this technology makes it possible not only to massively propagate the best genotypes of trees, but also serves a model for studying the structural, physiological and molecular and genetic mechanisms of both somatic and zygotic embryogenesis in conifers. The main aim of this research was to obtain embryogenic cultures (ECs) producing somatic embryos and embryonic suspension mass (ESM) of Picea obovata. The studies were carried out in 2014-2019 on 30 Siberian spruce trees growing in the vicinity of the city of Krasnoyarsk. To detect genotypes competent for somatic embryogenesis, new donor trees were selected every year for the experiment. 3-10 cones were collected from each tree at different stages of embryo development: globular embryo (the first decade of July), the initiation stage cotyledons (second decade of July), the stage of developed cotyledons (third decade of July) and mature embryos (August). Sterilized explants (zygotic embryos at different stages of development) were introduced into in vitro culture on basic media DCR (Gupta PK and Durzan DJ, 1985), ½LV (Litvay JD et al., 1985), MS (Murashige T and Skoog F, 1962) and AI (Tretyakova IN, 2012). All media were supplemented with myo-inositol - 100 mg/L, casein hydrolyzate - 500-1000 mg/L, L-glutamine - 500 mg/L, sucrose - 30 g/L and agar - 7 g/L. Ascorbic acid at a concentration of 400 mg/L was used as an antioxidant. The level of growth regulators was: 2,4-dichlorophenoxyacetic acid (2,4-D) - 2 mg/L and N6 -benzoaminopurine (BAP) - 1 mg/L. For the proliferation of the ESM, DCR and AI basic media containing 2,4-D (2 mg/L), BAP (0.5 mg/L) and sucrose (20 g/L) were used. The pH was adjusted to pH = 5.8. All culture medium and components were sterilized depending on their termolabile properties. Under aseptic conditions, embryos were removed from megagametophytes and inoculated into nutrient media, 10 explants per flask in 25 replicates. The cultures were incubated in the dark at 24 ± 1 °C. Subcultivation to fresh nutrient medium was carried out every 14 days. To control the quality of cell lines (CL) during subculturing, we performed cytological analyzes using temporary preparations (3-5 preparations for each CL). We evaluated the quality of the embryogenicity of the cultures by the presence of even single structures with pronounced polarity - a globular embryo with a suspensor. The results of the study showed that the induction of callus cultures of Siberian spruce is influenced by such factors as the development stage of the explant, the nutrient medium and the genotype of the donor tree. The introduction of P. obovata immature zygotic embryos into in vitro culture at the stage of the globular embryo, both with megagametophytes and extracted from them, turned out to be ineffective. The induction of callus cultures in Siberian spruce was significantly reduced when mature zygotic embryos were introduced into the culture in vitro. The highest response of explants of Siberian spruce was at the stage of developed cotyledons (See Table 1). In the DCR medium, 90% of explants formed callus (See Table 2). The mineral composition of the media did not significantly affect the induction of callus formation in Siberian spruce. The exception was the MS medium, in which callus cultures were formed only in 41% of explants (See Table 2). The growth of callus cultures was most active in the DCR medium. After 6 months of cultivation, 15-32% of calli remained viable (See Table 2). Cytological analysis of callus cultures showed that they include cells of different types (See Fig. 1 and 2). The first type of cells consisted of elongated cells reaching a length of 10 ± 3 μm, others consisted of isodiametric cells with a diameter of 60 ± 3.5 μm. The somatic embryo globule and embryonic tubes were formed from elongated cells. Isodiametric cells were actively dividing and forming callus. Only 3 cell lines (out of 300 cell lines) belonging to two donor trees had an active ability to proliferate. Globular somatic embryos were actively forming in these cell lines (See Fig. 3). An actively proliferating ESM was formed. Thus, we carried out a comprehensive assessment of the factors influencing the induction of somatic embryogenesis in Siberian spruce. The results obtained indicate that for the successful formation of somatic embryos, the determining factor is not only the choice of donor plants, but also the development stage of the explant. We found that the best stage in the development of zygotic embryos when introduced into in vitro culture of Siberian spruce is the stage of immature embryos with formed cotyledons, while the DCR, ½LV and AI nutrient medium supplemented with growth regulators (2.4-D and BAP) is optimal.


Sign in / Sign up

Export Citation Format

Share Document