scholarly journals Protein S deficiency complicated with repetitive peripheral arterial thrombosis successfully treated by mechanical thrombectomy device with Rotarex system

2017 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Wei-Sheng Liao ◽  
Wei-Tsung Wu ◽  
Nai-Yu Chi ◽  
Wen-Hsien Lee ◽  
Chun-Yuan Chu ◽  
...  

Protein S deficiency is an inherited thrombophilia associated with an increased risk of venous thromboembolism. However, arterial thrombosis is a relative rare complication of protein S deficiency and the prognosis of these patients was worse than those without protein S deficiency in the literature. Herein we reported a 43-year-old male with protein S deficiency experiencing several times acute peripheral arterial thrombosis of left leg. Surgical thrombectomy was performed initially but later endovascular treatment (EVT) was suggested. Although EVT was successfully performed by catheter-directed thrombolysis (CDT), arterial thrombosis still recurred three months later. CDT was tried again but thrombosis could not be treated by this strategy anymore. Therefore, we used mechanical thrombectomy device (Rotarex system) and successfully regained the straight-line blood flow to the foot after the procedure. Peripheral echo showed patent flow after 6 months follow-up. In conclusion, arterial thrombosis is a relative rare complication of protein S deficiency and prognosis was not well in the literature, our case reminds physicians that Rotarex system is a safe and highly efficient device for acute PAOD even in the patients with hypercoagulable state.

1989 ◽  
Vol 61 (01) ◽  
pp. 144-147 ◽  
Author(s):  
A Girolami ◽  
P Simioni ◽  
A R Lazzaro ◽  
I Cordiano

SummaryDeficiency of protein S has been associated with an increased risk of thrombotic disease as already shown for protein C deficiency. Deficiencies of any of these two proteins predispose to venous thrombosis but have been only rarely associated with arterial thrombosis.In this study we describe a case of severe cerebral arterial thrombosis in a 44-year old woman with protein S deficiency. The defect was characterized by moderately reduced levels of total and markedly reduced levels of free protein S. C4b-bp level was normal. Protein C, AT III and routine coagulation tests were within the normal limits.In her family two other members showed the same defect. All the affected members had venous thrombotic manifestations, two of them at a relatively young age. No other risk factors for thrombotic episodes were present in the family members. The patient reported was treated with ASA and dipyridamole and so far there were no relapses.


1996 ◽  
Vol 75 (02) ◽  
pp. 270-274 ◽  
Author(s):  
Benget Zöller ◽  
Johan Holm ◽  
Peter Svensson ◽  
Björn Dahlbäck

SummaryInherited resistance to activated protein C (APC-resistance), caused by a point mutation in the factor V gene leading to replacement of Arg(R)506 with a Gin (Q), and inherited protein S deficiency are associated with functional impairment of the protein C anticoagulant system, yielding lifelong hypercoagulability and increased risk of thrombosis. APC-resistance is often an additional genetic risk factor in thrombosis-prone protein S deficient families. The plasma concentration of prothrombin fragment 1+2 (F1+2), which is a marker of hyper-coagulable states, was measured in 205 members of 34 thrombosis-prone families harbouring the Arg506 to Gin mutation (APC-resistance) and/or inherited protein S deficiency. The plasma concentration of F1+2 was significantly higher both in 38 individuals carrying the FV:Q506 mutation in heterozygous state (1.7 ± 0.7 nM; mean ± SD) and in 48 protein S deficient cases (1.9 ± 0.9 nM), than in 100 unaffected relatives (1.3 ±0.5 nM). Warfarin therapy decreased the F1+2 levels, even in those four patients who had combined defects (0.5 ± 0.3 nM). Our results agree with the hypothesis that individuals with APC-resistance or protein S deficiency have an imbalance between pro- and anti-coagulant forces leading to increased thrombin generation and a hypercoagulable state.


1989 ◽  
Vol 62 (03) ◽  
pp. 1040-1040 ◽  
Author(s):  
P Sié ◽  
B Boneu ◽  
R Biermé ◽  
M L Wiesel ◽  
L Grunebaum ◽  
...  

2014 ◽  
Vol 6 (2) ◽  
pp. 175-179
Author(s):  
AK Choudhury ◽  
M Khalequzzaman ◽  
S Hasem ◽  
M Akhtaruzzaman ◽  
S Jannat

Stent thrombosis (ST) is one of the major complications that occur in percutaneous coronary interventions (PCIs) with stents. Various factors have been attributed to the development of ST, and several strategies have been recommended for its management. Protein C or protein S deficiencies may uncommonly be responsible for coronary arterial thrombosis. We report a young woman with recurrent stent thrombosis due to the deficiency of protein S. After coronary stenting, stent thrombosis occurred two times despite aggressive medical therapy. This report suggests that the deficiency of protein C or S should be born in mind in a young patient with recurrent thrombotic events, and that anticoagulants in addition to antiplatelet agents considered in the presence of their deficiency DOI: http://dx.doi.org/10.3329/cardio.v6i2.18364 Cardiovasc. j. 2014; 6(2): 175-179


2021 ◽  
Vol 14 (11) ◽  
pp. e244983
Author(s):  
Leigh Cervino ◽  
Jillian Raybould ◽  
Patricia Fulco

Current literature suggests an increased risk of venous thromboembolism (VTE) in people living with HIV (PLWH) with poorly controlled viraemia and immunodeficiency. VTE treatment guidelines do not specifically address anticoagulation management in PLWH. We report a case of a 33-year-old woman diagnosed with an unprovoked pulmonary embolism (PE) and deemed protein S deficient. Three years later, she was diagnosed with AIDS. Antiretroviral therapy (ART) was promptly initiated with viral suppression and immune reconstitution within 12 months. Eight years after her initial PE, the patient self-discontinued warfarin. Multiple repeat protein S values were normal. ART without anticoagulation has continued for 3 years with no thrombotic events. This case describes a patient with VTE presumably secondary to undiagnosed HIV with possible consequent acquired protein S deficiency. Additional research is needed to understand the characteristics of PLWH with VTE who may warrant long-term anticoagulation as opposed to shorter courses.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 1935-1941 ◽  
Author(s):  
Michael Makris ◽  
Michael Leach ◽  
Nick J. Beauchamp ◽  
Martina E. Daly ◽  
Peter C. Cooper ◽  
...  

Abstract Protein S deficiency is a recognized risk factor for venous thrombosis. Of all the inherited thrombophilic conditions, it remains the most difficult to diagnose because of phenotypic variability, which can lead to inconclusive results. We have overcome this problem by studying a cohort of patients from a single center where the diagnosis was confirmed at the genetic level. Twenty-eight index patients with protein S deficiency and a PROS1 gene defect were studied, together with 109 first-degree relatives. To avoid selection bias, we confined analysis of total and free protein S levels and thrombotic risk to the patients' relatives. In this group of relatives, a low free protein S level was the most reliable predictor of a PROS1gene defect (sensitivity 97.7%, specificity 100%). First-degree relatives with a PROS1 gene defect had a 5.0-fold higher risk of thrombosis (95% confidence interval, 1.5-16.8) than those with a normal PROS1 gene and no other recognized thrombophilic defect. Although pregnancy/puerperium and immobility/trauma were important precipitating factors for thrombosis, almost half of the events were spontaneous. Relatives with splice-site or major structural defects in the PROS1 gene were more likely to have had a thrombotic event and had significantly lower total and free protein S levels than those relatives having missense mutations. We conclude that persons withPROS1 gene defects and protein S deficiency are at increased risk of thrombosis and that free protein S estimation offers the most reliable way of diagnosing the deficiency.


1999 ◽  
Vol 88 (3) ◽  
pp. 535-537
Author(s):  
A. Andrew Zimmerman ◽  
R. Scott Watson ◽  
Joseph K. Williams

2009 ◽  
Vol 62 (1-2) ◽  
pp. 53-62 ◽  
Author(s):  
Gorana Mitic ◽  
Ljubica Povazan ◽  
Radmila Lazic ◽  
Dragan Spasic ◽  
Milana Maticki-Sekulic

Inherited thrombophilia can be defined as a predisposition to thrombosis caused by heritable defects, such as mutations in genes encoding the natural anticoagulants or clotting factors. Pregnancy related risk of VTE is sixfold increased comparing to non pregnant age matched women. Pregnancy is an independent risk factor for the development of venous thromboembolism and this risk is further increased by the presence of thrombophilia. Aim of the study: The aim of the study was to evaluate the association between deficiency of natural anticoagulants: antithrombin, protein C and protein S and pregnancy related thromboembolism. We have determined the activities of antithrombin, proten C and protein S in 74 women with pregnancy related thrombosis and in 45 healthy women who had at least two uncomplicated pregnancies. Among the women with the history of venous thromboembolism antithrombin deficiency was found in 4 (5.4%), protein C deficiency in 2 (2.7%) and protein S deficiency in 5 (6.76%). The total of 11 (14.6%) women was found to be deficient. Not a single woman in the control group was found to be deficient in natural anticoagulants. Deficiencies of coagulation inhibitors are associated with an increased risk of venous thrombosis during pregnancy and puerperium (p= 0.006). Antithrombin, protein C and protein S deficient women are at higher risk of developing venous thromboembolism during antepartal period (p= 0.0097). Prophylactic treatment with heparin should be recommended from the very beginning of the following pregnancy in women with antithrombin, protein C or protein S deficiency.


1999 ◽  
Vol 88 (3) ◽  
pp. 535-537 ◽  
Author(s):  
A. Andrew Zimmerman ◽  
R. Scott Watson ◽  
Joseph K. Williams

Sign in / Sign up

Export Citation Format

Share Document