scholarly journals Deficiency of the natural anticoagulant proteins in women with pregnancy related venous thromboembolism

2009 ◽  
Vol 62 (1-2) ◽  
pp. 53-62 ◽  
Author(s):  
Gorana Mitic ◽  
Ljubica Povazan ◽  
Radmila Lazic ◽  
Dragan Spasic ◽  
Milana Maticki-Sekulic

Inherited thrombophilia can be defined as a predisposition to thrombosis caused by heritable defects, such as mutations in genes encoding the natural anticoagulants or clotting factors. Pregnancy related risk of VTE is sixfold increased comparing to non pregnant age matched women. Pregnancy is an independent risk factor for the development of venous thromboembolism and this risk is further increased by the presence of thrombophilia. Aim of the study: The aim of the study was to evaluate the association between deficiency of natural anticoagulants: antithrombin, protein C and protein S and pregnancy related thromboembolism. We have determined the activities of antithrombin, proten C and protein S in 74 women with pregnancy related thrombosis and in 45 healthy women who had at least two uncomplicated pregnancies. Among the women with the history of venous thromboembolism antithrombin deficiency was found in 4 (5.4%), protein C deficiency in 2 (2.7%) and protein S deficiency in 5 (6.76%). The total of 11 (14.6%) women was found to be deficient. Not a single woman in the control group was found to be deficient in natural anticoagulants. Deficiencies of coagulation inhibitors are associated with an increased risk of venous thrombosis during pregnancy and puerperium (p= 0.006). Antithrombin, protein C and protein S deficient women are at higher risk of developing venous thromboembolism during antepartal period (p= 0.0097). Prophylactic treatment with heparin should be recommended from the very beginning of the following pregnancy in women with antithrombin, protein C or protein S deficiency.

1989 ◽  
Vol 61 (01) ◽  
pp. 144-147 ◽  
Author(s):  
A Girolami ◽  
P Simioni ◽  
A R Lazzaro ◽  
I Cordiano

SummaryDeficiency of protein S has been associated with an increased risk of thrombotic disease as already shown for protein C deficiency. Deficiencies of any of these two proteins predispose to venous thrombosis but have been only rarely associated with arterial thrombosis.In this study we describe a case of severe cerebral arterial thrombosis in a 44-year old woman with protein S deficiency. The defect was characterized by moderately reduced levels of total and markedly reduced levels of free protein S. C4b-bp level was normal. Protein C, AT III and routine coagulation tests were within the normal limits.In her family two other members showed the same defect. All the affected members had venous thrombotic manifestations, two of them at a relatively young age. No other risk factors for thrombotic episodes were present in the family members. The patient reported was treated with ASA and dipyridamole and so far there were no relapses.


1988 ◽  
Vol 59 (01) ◽  
pp. 018-022 ◽  
Author(s):  
C L Gladson ◽  
I Scharrer ◽  
V Hach ◽  
K H Beck ◽  
J H Griffin

SummaryThe frequency of heterozygous protein C and protein S deficiency, detected by measuring total plasma antigen, in a group (n = 141) of young unrelated patients (<45 years old) with venous thrombotic disease was studied and compared to that of antithrombin III, fibrinogen, and plasminogen deficiencies. Among 91 patients not receiving oral anticoagulants, six had low protein S antigen levels and one had a low protein C antigen level. Among 50 patients receiving oral anticoagulant therapy, abnormally low ratios of protein S or C to other vitamin K-dependent factors were presented by one patient for protein S and five for protein C. Thus, heterozygous Type I protein S deficiency appeared in seven of 141 patients (5%) and heterozygous Type I protein C deficiency in six of 141 patients (4%). Eleven of thirteen deficient patients had recurrent venous thrombosis. In this group of 141 patients, 1% had an identifiable fibrinogen abnormality, 2% a plasminogen abnormality, and 3% an antithrombin III deficiency. Thus, among the known plasma protein deficiencies associated with venous thrombosis, protein S and protein C. deficiencies (9%) emerge as the leading identifiable associated abnormalities.


1996 ◽  
Vol 75 (02) ◽  
pp. 270-274 ◽  
Author(s):  
Benget Zöller ◽  
Johan Holm ◽  
Peter Svensson ◽  
Björn Dahlbäck

SummaryInherited resistance to activated protein C (APC-resistance), caused by a point mutation in the factor V gene leading to replacement of Arg(R)506 with a Gin (Q), and inherited protein S deficiency are associated with functional impairment of the protein C anticoagulant system, yielding lifelong hypercoagulability and increased risk of thrombosis. APC-resistance is often an additional genetic risk factor in thrombosis-prone protein S deficient families. The plasma concentration of prothrombin fragment 1+2 (F1+2), which is a marker of hyper-coagulable states, was measured in 205 members of 34 thrombosis-prone families harbouring the Arg506 to Gin mutation (APC-resistance) and/or inherited protein S deficiency. The plasma concentration of F1+2 was significantly higher both in 38 individuals carrying the FV:Q506 mutation in heterozygous state (1.7 ± 0.7 nM; mean ± SD) and in 48 protein S deficient cases (1.9 ± 0.9 nM), than in 100 unaffected relatives (1.3 ±0.5 nM). Warfarin therapy decreased the F1+2 levels, even in those four patients who had combined defects (0.5 ± 0.3 nM). Our results agree with the hypothesis that individuals with APC-resistance or protein S deficiency have an imbalance between pro- and anti-coagulant forces leading to increased thrombin generation and a hypercoagulable state.


Author(s):  
J Malm ◽  
M Laurell ◽  
I M Nilsson ◽  
B Dahlbäck

Consecutive patients with a history of thrombo-embolic disease (n = 241, 109 males, 132 females, mean age 46 y), referred to the Coagulation Laboratory during an 18 month period, were analysed for defects in their coagulation and fibrinolytic systems. The diagnosis of thrombosis had been verified with phlebography and that of pulmonary embolus with scintigraphy or angiography. Retinal venous thrombosis was found in 15 of the patients. In 15 cases the thrombotic episodes occurred postoperatively, in 15 during pregnancy, in 12 during the postpartum period and in 20 during use of oral contraceptives. In the remaining cases no clinical riskfactors were identified.The concentration of protein C zymogen was measured with an immunoradiometric assay. Functional protein C was determined with a clotting inhibition assay. Protein C deficiency was found in 8 cases. Two of these had a functional protein C deficiency with normal zymogen levels. The concentration of total, as well as free (not in complex with C4b-binding protein), protein S was determined with a radioimmunoassay. Two cases of protein S deficiency were detected. Three patients with antithrombin III deficiency and two with plasminogen deficiency were found.The fibrinolytic activity after venous occlusion was analysed in 216 patients. Decreased levels were found in 32 %. The concentration of tissue plasminogen activator inhibitor (PAI) was measured in 110 patients and found to be increased in 65 % of the cases. In 99 patients both the fibrinolytic activity and the PAI concentration were measured. A combination of decreased fibrinolytic activity and increased levels of PAI was found in 44 cases. The concentration of tissue plasminogen activator antigen was decreased in 22 % of 105 cases analysed.Thus, in this material of patients with thrombo-embolic disease, abnormalities were found in 47 %. Defects in the fibrinolytic system were the most common findings. Protein C or protein S deficiency was diagnosed in less than 5 % of the cases.


1997 ◽  
Vol 78 (06) ◽  
pp. 1426-1429 ◽  
Author(s):  
M Makris ◽  
F E Preston ◽  
N J Beauchamp ◽  
P C Cooper ◽  
M E Daly ◽  
...  

SummaryThe presence of the 20210A allele of the prothrombin (PT) gene has recently been shown to be a risk factor for venous thromboembolism. This is probably mediated through increased plasma prothrombin levels. The aim of this study was to compare the prevalence of the prothrombin 20210A allele in control subjects and in subjects with recognised thrombophilia and to establish whether the additional inheritance of the PT 20210A allele is associated with an increased risk of venous thromboembolism. 101 subjects with a history of venous thromboembolism and diagnosed as having either factor V Leiden (R506Q) or heritable deficiencies of protein C, protein S or antithrombin were studied. The prevalence of the PT 20210A allele in this group was compared with the results obtained for 150 control subjects. In addition, the relationships were examined between genetic status and the number of documented thromboembolic episodes, and between plasma prothrombin levels and possession of the PT 20210A allele. 8 (7.9%) of the 101 patients were also heterozygous for the PT 20210A allele. This compares with 0.7% in the control subjects (p = 0.005). After exclusion of patients on warfarin, the mean plasma prothrombin of 113 subjects without 20210A was 1.09 U/ml, as compared with 1.32 U/ml in 8 with the allele (p = 0.0002). Among the 101 patients with either factor V Leiden, protein S deficiency, protein C deficiency or antithrombin deficiency, the age adjusted mean (SD) number of venous thromboembolic episodes at diagnosis was 3.7 (1.5) in those with the PT 20210A allele, as compared with 1.9 (1.1) in those without (p = 0.0001). We have demonstrated that the prevalence of the PT 20210A allele is significantly greater in subjects with venous thrombosis and characterised heritable thrombophilia than in normal control subjects and that the additional inheritance of PT 20210A is associated with an increased risk of venous thromboembolism. We have also confirmed that plasma prothrombin levels are significantly greater in subjects possessing the PT 20210A compared with those who do not.


Blood ◽  
2015 ◽  
Vol 126 (19) ◽  
pp. 2247-2253 ◽  
Author(s):  
Fumiaki Banno ◽  
Toshiyuki Kita ◽  
José A. Fernández ◽  
Hiroji Yanamoto ◽  
Yuko Tashima ◽  
...  

Key Points A protein S-K196E mutation reduced its activated protein C cofactor activity in recombinant murine protein S-K196E and in K196E mutant mice. Mice carrying a protein S-K196E mutation or heterozygous protein S deficiency were more vulnerable to venous thrombosis than wild-type mice.


2014 ◽  
Vol 52 (193) ◽  
pp. 729-731
Author(s):  
Arun Kannan ◽  
Jose Lizcano ◽  
Sweta Chandra ◽  
Christie Murphy

Warfarin Induced Skin Necrosis is a well-known complication in patients being started on warfarin without adequate bridging . The mechanism is thought to be due to protein C deficiency . We present a rather unusual cause of protein C deficiency due to sepsis resulting in warfarin induced skin necrosis. 43 year old lady who has been on chronic warfarin therapy secondary to anti phospholipid syndrome was admitted to the hospital for acute ischemic cerebellar stroke. Warfarin was held due to acute thrombocytopenia. She was discharged after restarting the warfarin. She presented back with septic shock due to pneumonia. She was found to have multiple necrotic areas consistent with skin necrosis. Unfortunately, patient died due to multi organ failure despite goal directed therapy. This case demonstrates the importance of recognizing the sepsis as an acquired cause of protein C deficiency.


Blood ◽  
2012 ◽  
Vol 120 (7) ◽  
pp. 1510-1515 ◽  
Author(s):  
Susanne Holzhauer ◽  
Neil A. Goldenberg ◽  
Ralf Junker ◽  
Christine Heller ◽  
Monika Stoll ◽  
...  

Abstract Screening for inherited thrombophilia (IT) is controversial; persons at high risk for venous thromboembolism (VTE) who benefit from screening need to be identified. We tested 533 first- and second-degree relatives of 206 pediatric VTE patients for IT (antithrombin, protein C, protein S, factor V G1691A, factor II G20210A) and determined the incidence of symptomatic VTE relative to their IT status. The risk for VTE was significantly increased among family members with, versus without, IT (hazard ratio = 7.6; 95% confidence interval [CI], 4.0-14.5; P < .001) and highest among carriers of antithrombin, protein C, or protein S deficiency (hazard ratio = 25.7; 95% CI, 12.2-54.2; P < .001). Annual incidences of VTE were 2.82% (95% CI, 1.63%-4.80%) among family members found to be carriers of antithrombin, protein C, or protein S deficiency, 0.42% (0.12%-0.53%) for factor II G202010A, 0.25% (0.12%-0.53%) for factor V G1691A, and 0.10% (0.06%-0.17%) in relatives with no IT. Given the high absolute risk of VTE in relatives with protein C, protein S, and antithrombin deficiency, we suggest screening for these forms of hereditary thrombophilia in children with VTE and their relatives. Interventional studies are required to assess whether thromboembolism can be prevented in this high-risk population.


Sign in / Sign up

Export Citation Format

Share Document