Severe Arterial Cerebral Thrombosis in a Patient with Protein S Deficiency (Moderately Reduced Total and Markedly Reduced Free Protein S): A Family Study

1989 ◽  
Vol 61 (01) ◽  
pp. 144-147 ◽  
Author(s):  
A Girolami ◽  
P Simioni ◽  
A R Lazzaro ◽  
I Cordiano

SummaryDeficiency of protein S has been associated with an increased risk of thrombotic disease as already shown for protein C deficiency. Deficiencies of any of these two proteins predispose to venous thrombosis but have been only rarely associated with arterial thrombosis.In this study we describe a case of severe cerebral arterial thrombosis in a 44-year old woman with protein S deficiency. The defect was characterized by moderately reduced levels of total and markedly reduced levels of free protein S. C4b-bp level was normal. Protein C, AT III and routine coagulation tests were within the normal limits.In her family two other members showed the same defect. All the affected members had venous thrombotic manifestations, two of them at a relatively young age. No other risk factors for thrombotic episodes were present in the family members. The patient reported was treated with ASA and dipyridamole and so far there were no relapses.

2009 ◽  
Vol 62 (1-2) ◽  
pp. 53-62 ◽  
Author(s):  
Gorana Mitic ◽  
Ljubica Povazan ◽  
Radmila Lazic ◽  
Dragan Spasic ◽  
Milana Maticki-Sekulic

Inherited thrombophilia can be defined as a predisposition to thrombosis caused by heritable defects, such as mutations in genes encoding the natural anticoagulants or clotting factors. Pregnancy related risk of VTE is sixfold increased comparing to non pregnant age matched women. Pregnancy is an independent risk factor for the development of venous thromboembolism and this risk is further increased by the presence of thrombophilia. Aim of the study: The aim of the study was to evaluate the association between deficiency of natural anticoagulants: antithrombin, protein C and protein S and pregnancy related thromboembolism. We have determined the activities of antithrombin, proten C and protein S in 74 women with pregnancy related thrombosis and in 45 healthy women who had at least two uncomplicated pregnancies. Among the women with the history of venous thromboembolism antithrombin deficiency was found in 4 (5.4%), protein C deficiency in 2 (2.7%) and protein S deficiency in 5 (6.76%). The total of 11 (14.6%) women was found to be deficient. Not a single woman in the control group was found to be deficient in natural anticoagulants. Deficiencies of coagulation inhibitors are associated with an increased risk of venous thrombosis during pregnancy and puerperium (p= 0.006). Antithrombin, protein C and protein S deficient women are at higher risk of developing venous thromboembolism during antepartal period (p= 0.0097). Prophylactic treatment with heparin should be recommended from the very beginning of the following pregnancy in women with antithrombin, protein C or protein S deficiency.


1990 ◽  
Vol 64 (02) ◽  
pp. 206-210 ◽  
Author(s):  
C F Allaart ◽  
D C Aronson ◽  
Th Ruys ◽  
F R Rosendaal ◽  
J H van Bockel ◽  
...  

SummaryProtein S is the vitamin K dependent cofactor of activated protein C. It has an important role in the regulation of blood coagulation and fibrinolysis. Hereditary protein S deficiency is associated with familial venous thrombophilia. Since a few patients with arterial occlusions have been reported to be protein S deficient, it is speculated that hereditary protein S deficiency may be also a risk factor for the development of arterial thrombosis. In a group of 37 consecutive patients with arterial occlusive disease presenting before the age of 45, three patients were found heterozygous for hereditary protein S deficiency. None of the patients had a protein C deficiency or an antithrombin III deficiency. Family investigations showed a clear association between the hereditary deficiency and venous thrombosis, but a relation between the deficiency and arterial thrombosis was less obvious. A review of previous literature on patients with arterial thrombosis and protein S deficiency revealed that more extensive studies are needed to demonstrate whether or not hereditary protein S deficiency is a risk factor for the development of arterial thrombosis.


1988 ◽  
Vol 59 (01) ◽  
pp. 018-022 ◽  
Author(s):  
C L Gladson ◽  
I Scharrer ◽  
V Hach ◽  
K H Beck ◽  
J H Griffin

SummaryThe frequency of heterozygous protein C and protein S deficiency, detected by measuring total plasma antigen, in a group (n = 141) of young unrelated patients (<45 years old) with venous thrombotic disease was studied and compared to that of antithrombin III, fibrinogen, and plasminogen deficiencies. Among 91 patients not receiving oral anticoagulants, six had low protein S antigen levels and one had a low protein C antigen level. Among 50 patients receiving oral anticoagulant therapy, abnormally low ratios of protein S or C to other vitamin K-dependent factors were presented by one patient for protein S and five for protein C. Thus, heterozygous Type I protein S deficiency appeared in seven of 141 patients (5%) and heterozygous Type I protein C deficiency in six of 141 patients (4%). Eleven of thirteen deficient patients had recurrent venous thrombosis. In this group of 141 patients, 1% had an identifiable fibrinogen abnormality, 2% a plasminogen abnormality, and 3% an antithrombin III deficiency. Thus, among the known plasma protein deficiencies associated with venous thrombosis, protein S and protein C. deficiencies (9%) emerge as the leading identifiable associated abnormalities.


1996 ◽  
Vol 75 (02) ◽  
pp. 270-274 ◽  
Author(s):  
Benget Zöller ◽  
Johan Holm ◽  
Peter Svensson ◽  
Björn Dahlbäck

SummaryInherited resistance to activated protein C (APC-resistance), caused by a point mutation in the factor V gene leading to replacement of Arg(R)506 with a Gin (Q), and inherited protein S deficiency are associated with functional impairment of the protein C anticoagulant system, yielding lifelong hypercoagulability and increased risk of thrombosis. APC-resistance is often an additional genetic risk factor in thrombosis-prone protein S deficient families. The plasma concentration of prothrombin fragment 1+2 (F1+2), which is a marker of hyper-coagulable states, was measured in 205 members of 34 thrombosis-prone families harbouring the Arg506 to Gin mutation (APC-resistance) and/or inherited protein S deficiency. The plasma concentration of F1+2 was significantly higher both in 38 individuals carrying the FV:Q506 mutation in heterozygous state (1.7 ± 0.7 nM; mean ± SD) and in 48 protein S deficient cases (1.9 ± 0.9 nM), than in 100 unaffected relatives (1.3 ±0.5 nM). Warfarin therapy decreased the F1+2 levels, even in those four patients who had combined defects (0.5 ± 0.3 nM). Our results agree with the hypothesis that individuals with APC-resistance or protein S deficiency have an imbalance between pro- and anti-coagulant forces leading to increased thrombin generation and a hypercoagulable state.


2014 ◽  
Vol 6 (2) ◽  
pp. 175-179
Author(s):  
AK Choudhury ◽  
M Khalequzzaman ◽  
S Hasem ◽  
M Akhtaruzzaman ◽  
S Jannat

Stent thrombosis (ST) is one of the major complications that occur in percutaneous coronary interventions (PCIs) with stents. Various factors have been attributed to the development of ST, and several strategies have been recommended for its management. Protein C or protein S deficiencies may uncommonly be responsible for coronary arterial thrombosis. We report a young woman with recurrent stent thrombosis due to the deficiency of protein S. After coronary stenting, stent thrombosis occurred two times despite aggressive medical therapy. This report suggests that the deficiency of protein C or S should be born in mind in a young patient with recurrent thrombotic events, and that anticoagulants in addition to antiplatelet agents considered in the presence of their deficiency DOI: http://dx.doi.org/10.3329/cardio.v6i2.18364 Cardiovasc. j. 2014; 6(2): 175-179


Author(s):  
J Malm ◽  
M Laurell ◽  
I M Nilsson ◽  
B Dahlbäck

Consecutive patients with a history of thrombo-embolic disease (n = 241, 109 males, 132 females, mean age 46 y), referred to the Coagulation Laboratory during an 18 month period, were analysed for defects in their coagulation and fibrinolytic systems. The diagnosis of thrombosis had been verified with phlebography and that of pulmonary embolus with scintigraphy or angiography. Retinal venous thrombosis was found in 15 of the patients. In 15 cases the thrombotic episodes occurred postoperatively, in 15 during pregnancy, in 12 during the postpartum period and in 20 during use of oral contraceptives. In the remaining cases no clinical riskfactors were identified.The concentration of protein C zymogen was measured with an immunoradiometric assay. Functional protein C was determined with a clotting inhibition assay. Protein C deficiency was found in 8 cases. Two of these had a functional protein C deficiency with normal zymogen levels. The concentration of total, as well as free (not in complex with C4b-binding protein), protein S was determined with a radioimmunoassay. Two cases of protein S deficiency were detected. Three patients with antithrombin III deficiency and two with plasminogen deficiency were found.The fibrinolytic activity after venous occlusion was analysed in 216 patients. Decreased levels were found in 32 %. The concentration of tissue plasminogen activator inhibitor (PAI) was measured in 110 patients and found to be increased in 65 % of the cases. In 99 patients both the fibrinolytic activity and the PAI concentration were measured. A combination of decreased fibrinolytic activity and increased levels of PAI was found in 44 cases. The concentration of tissue plasminogen activator antigen was decreased in 22 % of 105 cases analysed.Thus, in this material of patients with thrombo-embolic disease, abnormalities were found in 47 %. Defects in the fibrinolytic system were the most common findings. Protein C or protein S deficiency was diagnosed in less than 5 % of the cases.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 1935-1941 ◽  
Author(s):  
Michael Makris ◽  
Michael Leach ◽  
Nick J. Beauchamp ◽  
Martina E. Daly ◽  
Peter C. Cooper ◽  
...  

Abstract Protein S deficiency is a recognized risk factor for venous thrombosis. Of all the inherited thrombophilic conditions, it remains the most difficult to diagnose because of phenotypic variability, which can lead to inconclusive results. We have overcome this problem by studying a cohort of patients from a single center where the diagnosis was confirmed at the genetic level. Twenty-eight index patients with protein S deficiency and a PROS1 gene defect were studied, together with 109 first-degree relatives. To avoid selection bias, we confined analysis of total and free protein S levels and thrombotic risk to the patients' relatives. In this group of relatives, a low free protein S level was the most reliable predictor of a PROS1gene defect (sensitivity 97.7%, specificity 100%). First-degree relatives with a PROS1 gene defect had a 5.0-fold higher risk of thrombosis (95% confidence interval, 1.5-16.8) than those with a normal PROS1 gene and no other recognized thrombophilic defect. Although pregnancy/puerperium and immobility/trauma were important precipitating factors for thrombosis, almost half of the events were spontaneous. Relatives with splice-site or major structural defects in the PROS1 gene were more likely to have had a thrombotic event and had significantly lower total and free protein S levels than those relatives having missense mutations. We conclude that persons withPROS1 gene defects and protein S deficiency are at increased risk of thrombosis and that free protein S estimation offers the most reliable way of diagnosing the deficiency.


2014 ◽  
Vol 52 (193) ◽  
pp. 729-731
Author(s):  
Arun Kannan ◽  
Jose Lizcano ◽  
Sweta Chandra ◽  
Christie Murphy

Warfarin Induced Skin Necrosis is a well-known complication in patients being started on warfarin without adequate bridging . The mechanism is thought to be due to protein C deficiency . We present a rather unusual cause of protein C deficiency due to sepsis resulting in warfarin induced skin necrosis. 43 year old lady who has been on chronic warfarin therapy secondary to anti phospholipid syndrome was admitted to the hospital for acute ischemic cerebellar stroke. Warfarin was held due to acute thrombocytopenia. She was discharged after restarting the warfarin. She presented back with septic shock due to pneumonia. She was found to have multiple necrotic areas consistent with skin necrosis. Unfortunately, patient died due to multi organ failure despite goal directed therapy. This case demonstrates the importance of recognizing the sepsis as an acquired cause of protein C deficiency.


2017 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Wei-Sheng Liao ◽  
Wei-Tsung Wu ◽  
Nai-Yu Chi ◽  
Wen-Hsien Lee ◽  
Chun-Yuan Chu ◽  
...  

Protein S deficiency is an inherited thrombophilia associated with an increased risk of venous thromboembolism. However, arterial thrombosis is a relative rare complication of protein S deficiency and the prognosis of these patients was worse than those without protein S deficiency in the literature. Herein we reported a 43-year-old male with protein S deficiency experiencing several times acute peripheral arterial thrombosis of left leg. Surgical thrombectomy was performed initially but later endovascular treatment (EVT) was suggested. Although EVT was successfully performed by catheter-directed thrombolysis (CDT), arterial thrombosis still recurred three months later. CDT was tried again but thrombosis could not be treated by this strategy anymore. Therefore, we used mechanical thrombectomy device (Rotarex system) and successfully regained the straight-line blood flow to the foot after the procedure. Peripheral echo showed patent flow after 6 months follow-up. In conclusion, arterial thrombosis is a relative rare complication of protein S deficiency and prognosis was not well in the literature, our case reminds physicians that Rotarex system is a safe and highly efficient device for acute PAOD even in the patients with hypercoagulable state.


Sign in / Sign up

Export Citation Format

Share Document