scholarly journals Variability of Indian summer monsoon: Relationship with surface air temperature anomalies over northern hemisphere

MAUSAM ◽  
2022 ◽  
Vol 44 (2) ◽  
pp. 191-198
Author(s):  
R. K. VERMA

Thirty year (1950-79) time series of Monsoon Index (MI) is correlated with the gridded surface air temperature data over northern hemisphere land at various time lags of months (i.e., months preceding concurrent and succeeding to the monsoon season) to identify tele-connections of monsoon with the northern hemisphere surface air temperature anomalies. .   Out of three key regions identified which show statistically significant relationship of monsoon rainfall, two regions are in the higher latitudinal belt of 40oN- 70oN over North America and Eurasia which show positive correlations with temperatures during northern winter particularly during  January and February. The third region is located over northwest India and adjoining Pakistan, where the maximum positive correlation is observed to occur during the pre-li1onsoon months of April and May. These relationships suggest that cooler northern hemisphere during the preceding seasons of winter/spring over certain key regions are generally associated with below normal summer monsoon rainfall over India and vice-versa which could be useful predictors for long-range forecasting of monsoon.   There are two large regions in the northern tropics, namely, Asian and African monsoons whose temperatures reveal strong negative correlations with monsoon rainfall during the seasons concurrent and subsequent to the summer monsoon season. However, persistence of this relationship for longer period of about two seasons after the monsoon, suggests the dominant influence of  ENSO (El. Nino-Southern Oscillation) on tropical climate.  

2020 ◽  
Author(s):  
Hasi Aru

<p>The western Pacific pattern (WP) is one of the most prominent teleconnection patterns over the Northern Hemisphere (NH) in boreal winter. There exist several methods employed to identify the WP in the literature. This study compares eight WPs defined by different methods. Correlation coefficients among the eight WP indices (WPIs) show considerable spreads, though most of them are statistically significant. The meridional dipole structure of WP can be captured by all of the WPIs, but it shows large spreads in the locations of the centers. Several WPIs produce a significant correlation with the winter Arctic Oscillation, with marked signals of atmospheric anomalies over the Arctic region. Connections of the WPs with the simultaneous winter El Niño-Southern Oscillation (ENSO) depend largely upon their definitions. Impacts of the WPs on the surface air temperature over many parts of Eurasia and North America are also sensitive to their definitions. Differences in the surface air temperature anomalies are closely related to differences in the spatial structure of the WPs. Finally, we define a new WP index as differences in the area-average 500-hPa geopotential height anomalies between subtropics and mid-latitude of northwestern Pacific. This newly defined WP index has a close relation with the above eight WPIs, the tropical Pacific sea surface temperature and surface air temperature anomalies over Eurasia and North America.</p>


2020 ◽  
Author(s):  
György Varga ◽  
Nadia Gammoudi ◽  
János Kovács

<p>Saharan dust events were investigated in the Carpathian Basin (Central Europe) for the period between 1979 and 2018 by using various satellite (TOMS and OMI Aerosol Index; MODIS AOD) and numerical forecast (Barcelona Supercomputing Centre’s DREAM, NMMB/BSC-Dust-model and SKIRON) products and modelled deposition of NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2. The identified 218 episodes were classified into three characteristic clusters based on synoptic background. 700 hPa geopotential height, wind vectors and meridional flow patterns, as well as backward trajectories of the episodes determined the classification.</p><p>Interannual variability of dust activity was remarkable, while seasonal frequencies of the episodes revealed clear spatiotemporal patterns with spring (40.2%) and summer (31.6%) maxima of the events. Mean values of dust deposition showed springtime maxima (44.1%) and dominance of wet deposition (77-93%), while amount of deposited dust material in the other seasons were quite similar, indicating the governing role of local weather conditions (e.g., precipitation patterns). Average warm advection of the episodes was 3.5°C (with spring minima, due to the more rain), but the decadal surface air temperature anomalies showed a general increasing trend.</p><p>Recently, a few more intense wintertime dust deposition events indicated changes in the deterministic atmospheric flow system. Seasonal and decadal zonal mean surface air temperature anomalies of dusty days showed clearly the increased warming of high latitudes during the last few winter episodes. The enhanced meridionality of (dust transporting) winds was also observable in the number of days with 15< m/s meridional wind component (at 700 hPa). Warmer Arctic region and more meandering air flow patterns could be responsible for these unusual dust episodes in the recent years.</p><p>Support of the National Research, Development and Innovation Office NKFIH KH130337 and NKFIH K120213 are gratefully acknowledged.</p>


Author(s):  
J. V. Ratnam ◽  
Takeshi Doi ◽  
Yushi Morioka ◽  
Pascal Oettli ◽  
Masami Nonaka ◽  
...  

AbstractSelective ensemble mean (SEM) technique is applied to the late spring and summer months (May to August) surface air temperature anomaly predictions of the Scale Interaction Experiment-Frontier Research Center for Global Change Version 2 (SINTEX-F2) coupled general circulation model over Japan. Using the Köppen-Geiger climatic classification we chose four regions over Japan for applying the SEM technique. The SINTEX-F2 ensemble members for the SEM are chosen based on the anomaly correlation coefficients (ACC) of the SINTEX-F2 predicted and observed surface air temperature anomalies. The SEM technique is applied to generate the forecasts of the surface air temperature anomalies for the period 1983 to 2018 using the selected members. Analysis shows the ACC skill score of the SEM prediction to be higher compared to the ACC skill score of predictions obtained by averaging all the 24 members of the SINTEX-F2 (ENSMEAN). The SEM predicted surface air temperature anomalies also have higher hit rate and lower false alarm rate compared to the ENSMEAN predicted anomalies over a range of temperature anomalies. The results indicate the SEM technique to be a simple and easy to apply method to improve the SINTEX-F2 predictions of surface air temperature anomalies over Japan. The better performance of the SEM in generating the surface air temperature anomalies can be partly attributed to realistic prediction of 850hPa geopotential height anomalies over Japan.


Sign in / Sign up

Export Citation Format

Share Document