scholarly journals In vitro activities of colistin combined with imipenem, tigecycline or cefoperazone-sulbactam against multidrug-resistant Acinetobacter baumannii blood-stream isolates

2016 ◽  
Vol 4 (4) ◽  
pp. 51 ◽  
Author(s):  
Oznur Ak ◽  
Demet Haciseyitoglu ◽  
Yasemin Cag ◽  
Serap Gencer ◽  
Funda Biteker ◽  
...  
2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S662-S662
Author(s):  
Alita Miller ◽  
Sarah McLeod ◽  
Samir Moussa ◽  
Meredith Hackel

Abstract Background The incidence of infections caused by multidrug-resistant (MDR) Acinetobacter baumannii (Ab) is increasing at an alarming rate in certain regions of the world, including the Middle East. Sulbactam (SUL) has intrinsic antibacterial activity against Ab; however, the prevalence of β-lactamases in Ab has limited its therapeutic utility. Durlobactam (DUR, formerly ETX2514) is a diazabicyclooctenone β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C and D β-lactamases that restores SUL activity in vitro against MDR Ab. SUL-DUR is an antibiotic designed to treat serious infections caused by Acinetobacter, including multidrug-resistant strains, that is currently in Phase 3 clinical development. In global surveillance studies of >3600 isolates from 2012-2017, the MIC90 of SUL-DUR was 2 mg/L. Although surveillance systems to monitor MDR infections in the Middle East are currently being established, quantitative, prevalence-based data are not yet available. Therefore, the potency of SUL-DUR was determined against 190 recent, diverse Ab clinical isolates from this region. Methods 190 Ab isolates were collected between 2016 - 2018 from medical centers located in Israel (N = 47), Jordan (N = 36), Qatar (N = 13), Kuwait (N = 42), Lebanon (N = 8), Saudi Arabia (N = 24) and United Arab Emirates (N = 20). Seventy-five percent and 20.5% of these isolates were from respiratory and blood stream infections, respectively. Susceptibility to SUL-DUR and comparator agents was performed according to CLSI guidelines, and data analysis was performed using CLSI and EUCAST breakpoint criteria where available. Results This collection of isolates was 86% carbapenem-resistant and 90% sulbactam-resistant (based on a breakpoint of 4 mg/L). The addition of SUL-DUR (fixed at 4 mg/L) decreased the sulbactam MIC90 from 64 mg/L to 4 mg/L. Only 3 isolates (1.6%) had SUL-DUR MIC values of > 4 mg/L. This potency was consistent across countries, sources of infection and subsets of resistance phenotypes. Conclusion SUL-DUR demonstrated potent antibacterial activity against recent clinical isolates of Ab from the Middle East, including MDR isolates. These data support the global development of SUL-DUR for the treatment of MDR Ab infections. Disclosures Alita Miller, PhD, Entasis Therapeutics (Employee) Sarah McLeod, PhD, Entasis Therapeutics (Employee) Samir Moussa, PhD, Entasis Therapeutics (Employee)


2009 ◽  
Vol 53 (6) ◽  
pp. 2693-2695 ◽  
Author(s):  
Kevin S. Akers ◽  
Katrin Mende ◽  
Heather C. Yun ◽  
Duane R. Hospenthal ◽  
Miriam L. Beckius ◽  
...  

ABSTRACT Infections with multidrug-resistant Acinetobacter baumannii-Acinetobacter calcoaceticus complex bacteria complicate the care of U.S. military personnel and civilians worldwide. One hundred thirty-three isolates from 89 patients at our facility during 2006 and 2007 were tested by disk diffusion, Etest, and broth microdilution for susceptibility to tetracycline, doxycycline, minocycline, and tigecycline. Minocycline was the most active in vitro, with 90% of the isolates tested susceptible. Susceptibilities varied significantly with the testing method. The acquired tetracycline resistance genes tetA, tetB, and tetA(39) were present in the isolates.


2014 ◽  
Vol 46 (4) ◽  
pp. 260-264 ◽  
Author(s):  
Piotr Majewski ◽  
Piotr Wieczorek ◽  
Dominika Ojdana ◽  
Paweł Tomasz Sacha ◽  
Anna Wieczorek ◽  
...  

2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S314-S314
Author(s):  
Alita Miller ◽  
Sarah McLeod ◽  
Tarun Mathur ◽  
Ian Morrissey

Abstract Background The incidence of infections caused by multidrug-resistant Acinetobacter baumannii is increasing at an alarming rate in Southeast Asia and other parts of the world. Sulbactam (SUL) has intrinsic antibacterial activity against A. baumannii; however, the prevalence of β-lactamases in this species has limited its therapeutic use. Durlobactam (ETX2514, DUR) is a novel β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C and D β-lactamases. DUR restores SUL in vitro activity against multidrug-resistant A. baumannii. Against >3,600 globally diverse, clinical isolates from 2012–2017, addition of 4 mg/L DUR reduced the SUL MIC90 from >32 to 2 mg/L. SUL-DUR is currently in Phase 3 clinical development for the treatment of infections caused by carbapenem-resistant Acinetobacter spp.The goal of this study was to determine the activity of SUL-DUR and comparator antibiotics (amikacin (AMK), ampicillin-sulbactam (AMP-SUL), cefoperazone-sulbactam (CFP-SUL) and meropenem (MEM)) against A. baumannii isolated from hospitalized patients in India. Methods A total of 121 clinical A. baumannii isolates from multiple hospital settings and infection sources were collected between 2016–2019 from six geographically diverse hospitals in India. Species identification was performed by MALDI-TOF. Susceptibility of these isolates to SUL-DUR (10µg/10µg) and comparator antibiotics was determined by disk diffusion using CLSI methodology and interpretive criteria, except for CFP-SUL, for which resistance was defined using breakpoints from the CFP-SUL package insert. Results As shown in Table 1, resistance of this collection of isolates to marketed agents was extremely high. In contrast, based on preliminary breakpoint criteria, only 11.5% of isolates were resistant to SUL-DUR. Conclusion The in vitro antibacterial activity of SUL-DUR was significantly more potent than comparator agents against multidrug-resistant A. baumannii isolates collected from diverse sites in India. These data support the continued development of SUL-DUR for the treatment of antibiotic-resistant infections caused by A. baumannii. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sarah M. McLeod ◽  
Samir H. Moussa ◽  
Meredith A. Hackel ◽  
Alita A. Miller

ABSTRACT Acinetobacter baumannii-calcoaceticus complex (ABC) organisms cause severe infections that are difficult to treat due to preexisting antibiotic resistance. Sulbactam-durlobactam (formerly sulbactam-ETX2514) (SUL-DUR) is a β-lactam–β-lactamase inhibitor combination antibiotic designed to treat serious infections caused by ABC organisms, including multidrug-resistant (MDR) strains. The in vitro antibacterial activities of SUL-DUR and comparator agents were determined by broth microdilution against 1,722 clinical isolates of ABC organisms collected in 2016 and 2017 from 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East, and North America. Over 50% of these isolates were resistant to carbapenems. Against this collection of global isolates, SUL-DUR had a MIC50/MIC90 of 1/2 μg/ml compared to a MIC50/MIC90 of 8/64 μg/ml for sulbactam alone. This level of activity was found to be consistent across organisms, regions, sources of infection, and subsets of resistance phenotypes, including MDR and extensively drug-resistant isolates. The SUL-DUR activity was superior to those of the tested comparators, with only colistin having similar potency. Whole-genome sequencing of the 39 isolates (2.3%) with a SUL-DUR MIC of >4 μg/ml revealed that these strains encoded either the metallo-β-lactamase NDM-1, which durlobactam does not inhibit, or single amino acid substitutions near the active site of penicillin binding protein 3 (PBP3), the primary target of sulbactam. In summary, SUL-DUR demonstrated potent antibacterial activity against recent, geographically diverse clinical isolates of ABC organisms, including MDR isolates.


2016 ◽  
Vol 3 (suppl_1) ◽  
Author(s):  
Michael Rose ◽  
Amabel Pia Lapuebla ◽  
John Quale ◽  
David Landman

2004 ◽  
Vol 48 (12) ◽  
pp. 4919-4921 ◽  
Author(s):  
Lenie Dijkshoorn ◽  
Carlo P. J. M. Brouwer ◽  
Sylvia J. P. Bogaards ◽  
Alexandr Nemec ◽  
Peterhans J. van den Broek ◽  
...  

ABSTRACT The lactoferrin-derived peptide hLF(1-11), but not its control peptide, was highly effective against five multidrug-resistant Acinetobacter baumannii strains in vitro (3 to 4 log reduction) and against four of these strains in an experimental infection in mice (2 to 3 log reduction). Therefore, this peptide is a promising candidate as a novel agent against infections with multidrug-resistant A. baumannii.


Sign in / Sign up

Export Citation Format

Share Document