Characterization of Goat Production System in Shifting and Permanent Farming Systems in Western Ethiopia

2016 ◽  
Vol 6 (7) ◽  
pp. 24
Author(s):  
Yilma Tadesse ◽  
Alemayehu Abebe ◽  
Shibeshi Zerihun ◽  
Tesfaye Debelu ◽  
Workineh Tezera
2016 ◽  
Vol 49 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Francis Mbuza ◽  
Rosine Manishimwe ◽  
Janvier Mahoro ◽  
Thomas Simbankabo ◽  
Kizito Nishimwe

2022 ◽  
pp. 074873042110694
Author(s):  
Miguel F. Perea ◽  
Daniel A. Perdomo ◽  
Zenaida A. Corredor ◽  
Mario González ◽  
Hugo Hernandez-Fonseca ◽  
...  

A robust body of evidence has demonstrated that the lunar cycle plays an important role in the reproduction of fish living in natural environments. However, little is known about the influence of the moon on tilapia reproductive activity in intensive fish farming systems. This study aims to evaluate the influence of the lunar cycle on the reproductive performance of tilapias in an intensive outdoor tropical production system in Latin America. Records of two tilapia strains (Nile tilapia [ Oreochromis niloticus; n = 75] and Red tilapia [ Oreochromis spp.; n = 1335]) reared in concrete tanks in a commercial fish farm were analyzed. Over a 3-year period, 60,136 captures were made in intervals of 12 to 14 days and 6,600 females were manually spawned. The number of females spawned and the volume of eggs collected from each tank ( n = 9) were recorded. Data was analyzed by the general linear model and means were compared by least squares means method. A very slight or no variation was observed when the lunar cycle was split into two halves (crescent and waning). The proportions of females spawned and the volume of eggs per spawned female and per female in the tank varied considerably across the eight periods of the lunar cycle, with greater values in the waning than in the crescent phase. A significantly greater proportion of tilapia spawned and yielded more eggs around the full moon than around the new moon and remaining days of the lunar cycle. The moon cycle affected the reproductive activity of tilapia, which were more reproductively active around the full moon and most of the waning phase.


2018 ◽  
Vol 9 (7) ◽  
pp. 175-183
Author(s):  
Bob Karnuah Arthur ◽  
Osei-Amponsah Richard ◽  
Dunga Gregory ◽  
Wennah Arthur ◽  
T. Wiles Walter ◽  
...  

2016 ◽  
Vol 11 (9) ◽  
pp. 783-791
Author(s):  
Kachroo Dileep ◽  
Kachroo Jyoti ◽  
Bhat Anil ◽  
P Thakur N ◽  
K Gupta A ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Celia Abolnik ◽  
Christine Strydom ◽  
Dionne Linda Rauff ◽  
Daniel Barend Rudolph Wandrag ◽  
Deryn Petty

Abstract Background The threat of poultry-origin H6 avian influenza viruses to human health emphasizes the importance of monitoring their evolution. South Africa’s H6N2 epidemic in chickens began in 2001 and two co-circulating antigenic sub-lineages of H6N2 could be distinguished from the outset. The true incidence and prevalence of H6N2 in the country has been difficult to determine, partly due to the continued use of an inactivated whole virus H6N2 vaccine and the inability to distinguish vaccinated from non-vaccinated birds on serology tests. In the present study, the complete genomes of 12 H6N2 viruses isolated from various farming systems between September 2015 and February 2019 in three major chicken-producing regions were analysed and a serological experiment was used to demonstrate the effects of antigenic mismatch in diagnostic tests. Results Genetic drift in H6N2 continued and antigenic diversity in sub-lineage I is increasing; no sub-lineage II viruses were detected. Reassortment patterns indicated epidemiological connections between provinces as well as different farming systems, but there was no reassortment with wild bird or ostrich influenza viruses. The sequence mismatch between the official antigens used for routine hemagglutination inhibition (HI) testing and circulating field strains has increased steadily, and we demonstrated that H6N2 field infections are likely to be missed. More concerning, sub-lineage I H6N2 viruses acquired three of the nine HA mutations associated with human receptor-binding preference (A13S, V187D and A193N) since 2002. Most sub-lineage I viruses isolated since 2015 acquired the K702R mutation in PB2 associated with the ability to infect humans, whereas prior to 2015 most viruses in sub-lineages I and II contained the avian lysine marker. All strains had an unusual HA0 motif of PQVETRGIF or PQVGTRGIF. Conclusions The H6N2 viruses in South African chickens are mutating and reassorting amongst themselves but have remained a genetically pure lineage since they emerged more than 18 years ago. Greater efforts must be made by government and industry in the continuous isolation and characterization of field strains for use as HI antigens, new vaccine seed strains and to monitor the zoonotic threat of H6N2 viruses.


Robotica ◽  
1984 ◽  
Vol 2 (2) ◽  
pp. 105-109
Author(s):  
Richard M. Salter

SUMMARYThe production system has been used extensively in Artificial Intelligence systems due, possibly, to a lack of a prior procedural orientation towards the knowledge embedded within it. As a result, this paradigm is especially useful in modeling domains in which a strong procedural correlation of data would not naturally appear. The production system is therefore an appropriate tool for designing models of systems of independent processes whose interactions can be defined in terms of system state.We are interested in modeling continuous, concurrent processes for simulating robot activities, and present a description of a system which is capable of representing such processes as symbolic expressions within a production system database. This system implements a world model which acts as a continuous function of time, and a set of rules written in a language capable of specifying time-dependent properties of the model. In addition, rules may specify new rules, thus permitting processes to be mapped out over time as sequences of events.The methodology presented in this paper is an attempt to utilize the power of symbolic programming in a design for world modeling, and a characterization of the requirements for applying such systems to problem domains which contain a continuous parameter, such as time. We believe that the technique of embedding time used here is appropriate for expressing the dynamic evolution of these models.


Sign in / Sign up

Export Citation Format

Share Document