Analysis of Concentration Variations of Long-Range Transport PM10, NO2, and O3 due to COVID-19 Shutdown in East Asia in 2020

2021 ◽  
Vol 42 (3) ◽  
pp. 278-295
Author(s):  
Yu-Kyung Kim ◽  
Jae-Hee Cho ◽  
Hak-Sung Kim
2015 ◽  
Vol 37 (1) ◽  
Author(s):  
Souleymane Coulibaly ◽  
Hiroki Minami ◽  
Maho Abe ◽  
Tomohiro Hasei ◽  
Tadashi Oro ◽  
...  

Author(s):  
Hervé Petetin ◽  
Bastien Sauvage ◽  
Mark Parrington ◽  
Hannah Clark ◽  
Alain Fontaine ◽  
...  

<p><strong>Abstract.</strong> This study investigates the role of biomass burning and long-range transport in the anomalies of carbon monoxide (CO) regularly observed along the tropospheric vertical profiles measured in the framework of IAGOS. Considering the high interannual variability of biomass burning emissions and the episodic nature of pollution long-range transport, one strength of this study is the amount of data taken into account, namely 30,000 vertical profiles at 9 clusters of airports in Europe, North America, Asia, India and southern Africa over the period 2002&amp;ndash;2017. </p> <p> As a preliminary, a brief overview of the spatio-temporal variability, latitudinal distribution, interannual variability and trends of biomass burning CO emissions from 14 regions is provided. The distribution of CO mixing ratios at different levels of the troposphere is also provided based on the entire IAGOS database (125 million CO observations). </p> <p> This study focuses on the free troposphere (altitudes above 2<span class="thinspace"></span>km) where the long-range transport of pollution is favoured. Anomalies at a given airport cluster are here defined as departures from the local seasonally-averaged climatological vertical profile. The intensity of these anomalies varies significantly depending on the airport, with maximum (minimum) CO anomalies of 110&amp;ndash;150 (48)<span class="thinspace"></span>ppbv in Asia (Europe). Looking at the seasonal variation of the frequency of occurrence, the 25<span class="thinspace"></span>% strongest CO anomalies appears reasonably well distributed along the year, in contrast to the 5<span class="thinspace"></span>% or 1<span class="thinspace"></span>% strongest anomalies that exhibit a strong seasonality with for instance more frequent anomalies during summertime in northern United-States, during winter/spring in Japan, during spring in South-east China, during the non-monsoon seasons in south-east Asia and south India, and during summer/fall at Windhoek, Namibia. Depending on the location, these strong anomalies are observed in different parts of the free troposphere. </p> <p> In order to investigate the role of biomass burning emissions in these anomalies, we used the SOFT-IO v1.0 IAGOS added-value products that consist of FLEXPART 20-days backward simulations along all IAGOS aircraft trajectories, coupled with anthropogenic (MACCity) and biomass burning (GFAS) CO emission inventories and vertical injections. SOFT-IO estimates the contribution (in ppbv) of the recent (less than 20 days) primary worldwide CO emissions, tagged per source region. Biomass burning emissions are found to play an important role in the strongest CO anomalies observed at most airport clusters. The regional tags indicate a large contribution from boreal regions at airport clusters in Europe and North America during summer season. In both Japan and south India, the anthropogenic emissions dominate all along the year, except for the strongest summertime anomalies observed in Japan that are due to Siberian fires. The strongest CO anomalies at airport clusters located in south-east Asia are induced by fires burning during spring in south-east Asia and during fall in equatorial Asia. In southern Africa, the Windhoek airport was mainly impacted by fires in southern hemisphere Africa and South America. </p> <p> To our knowledge, no other studies have used such a large dataset of in situ vertical profiles for deriving a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO anomalies observed in the troposphere, in combination with information on the source regions. This study therefore provides both qualitative and quantitative information for interpreting the highly variable CO vertical distribution in several regions of interest.</p>


2018 ◽  
Author(s):  
Xinyi Dong ◽  
Joshua S. Fu ◽  
Qingzhao Zhu ◽  
Jian Sun ◽  
Jiani Tan ◽  
...  

Abstract. Haze has been severely affecting the densely populated areas in China during recent years. While many of the pilot studies have been devoted to investigate the contributions from local anthropogenic emission, limited attention has been paid to the influence from long-range transport. In this study, we use simulations from 6 participating models supplied through the Task Force on Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise to investigate the long-range transport impact of Europe and Russia/Belarussia/Ukraine on the surface air quality in East Asia, with special focus on their contributions during the haze episodes over China. The impact of 20 % anthropogenic emission perturbation from the source region is extrapolated by a factor of 5 to estimate the full impact. We find that the full impacts from EUR and RBU are 0.99 µg/m3 (3.1 %) and 1.32 µg/m3 (4.1 %) respectively during haze episodes, while the annual averaged full impacts are only 0.35 µg m3 (1.7 %) and 0.53 µg/m3 (2.6 %) respectively. By estimating the aerosol response within and above the planetary boundary layer (PBL), we find that long-range transport within the PBL contributes to 22–38 % of the total column density of aerosol response. Comparison with the HTAP Phase 1 (HTAP1) assessment reveals that from 2000 to 2010, the long-range transport from Europe to East Asia has decreased significantly by a factor of 2–10 for surface aerosol mass concentration due to the simultaneous emission reduction in source region and emission increase in the receptor region. By investigating the visibility response, we find that the long-range transport from the Europe and RBU region increases the number of haze events in China by 0.15 % and 0.11 % respectively, and the North China Plain and southeast China receives 1–3 extra haze days. This study is the first investigation into the contribution of long-range transport to haze in China with multiple model experiments.


SOLA ◽  
2005 ◽  
Vol 1 ◽  
pp. 121-124 ◽  
Author(s):  
Chan Bong Park ◽  
Nobuo Sugimoto ◽  
Ichiro Matsui ◽  
Atsushi Shimizu ◽  
Boyan Tatarov ◽  
...  

2017 ◽  
Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  

Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry-transport model GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and found that the simulated seasonal variations were improved by implementing an aging parameterization and reducing the wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Okhotsk Sea and East Siberia during winter and spring. We identified an important window area, which allowed a strong incoming of East Asian BC to the Arctic (130°–180° E and 3–8 km altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km altitude due to uplifting during the long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was smaller than that from other large source regions such as Europe, Russia and North America. However, the East Asian contribution was most important for BC in the middle troposphere (41 %) and BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of the Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.


2016 ◽  
Vol 141 ◽  
pp. 30-40 ◽  
Author(s):  
Indra Chandra ◽  
Seyoung Kim ◽  
Takafumi Seto ◽  
Yoshio Otani ◽  
Akinori Takami ◽  
...  

Tellus B ◽  
2014 ◽  
Vol 66 (1) ◽  
pp. 23733 ◽  
Author(s):  
Chuan-Yao Lin ◽  
Chun Zhao ◽  
Xiaohong Liu ◽  
Neng-Huei Lin ◽  
Wei-Nei Chen

2009 ◽  
Vol 407 (16) ◽  
pp. 4681-4686 ◽  
Author(s):  
Xiao-Yang Yang ◽  
Maromu Yamada ◽  
Ning Tang ◽  
Jin-Ming Lin ◽  
Wei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document