scholarly journals ASPECTS REGARDING OPTIMAL DESIGN FOR THE WORM-GEAR DRIVE

2021 ◽  
Vol 13 (3) ◽  
pp. 59-65
Author(s):  
Daniela Ghelase ◽  
◽  
Luiza Daschievici ◽  

It is known that, from the point of view of the accuracy of a machine-tool, at its design, the dynamic behaviour of each element of the kinematic chains prevails. Worm-gear drives are widely used in the different machine-tools and robots. Therefore, it is important that during meshing, as far as possible, there are no vibrations, shocks, power losses, noise and low durability. These requirements can be met if, for example, the gear ratio is constant during meshing, without transmission errors, which means that the worm-gear drive should have a high accuracy. The accuracy improvement of the worm-gear drive has long been a focus of attention for machine-tools designers. Thus, this paper presents various approaches to solving such problems, based on modelling and simulation, such as: estimating the load share of worm-gear drives and to calculate the instantaneous tooth meshing stiffness and loaded transmission errors; the desired worm-gear drive design configuration by altering the optimum set of worm-gear drive design parameters which are suitable for the required performance by associating it with SVM (Support Vector Machine); optimization approach for design of worm-gear drive based on Genetic Algorithm; design optimization of worm-gear drive with reduced power loss; etc. The optimization of the worm-gear design is an important problem for the research because the design variables are correlated to each other. An optimal design algorithm developed by the authors of this paper, for worm-gear drive, is also presented.

Author(s):  
I. H. Seol ◽  
Faydor L. Litvin

Abstract The worm and worm-gear tooth surfaces of existing design of Flender gear drive are in line contact at every instant and the gear drive is very sensitive to misalignment. Errors of alignment cause the shift of the bearing contact and transmission errors. The authors propose : (1) Methods for computerized simulation of meshing and contact of misaligned worm-gear drives of existing design (2) Methods of modification of geometry of worm-gear drives that enable to localize and stabilize the bearing contact and reduce the sensitivity of drives to misalignment (3) Methods for computerized simulation of meshing and contact of worm-gear drives with modified geometry The proposed approach was applied as well for the involute (David Brown) and Klingelnberg type of worm-gear drives. Numerical examples that illustrate the developed theory are provided.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Wei-Liang Chen ◽  
Chung-Biau Tsay

Based on the previously developed mathematical model of a series of recess action (RA) worm gear drive (i.e., semi RA, full RA, and standard proportional tooth types) with double-depth teeth, the tooth contact analysis (TCA) technique is utilized to investigate the kinematic error (KE), contact ratio (CR), average contact ratio (ACR), instantaneous contact teeth (ICT) under different assembly conditions. Besides, the bearing contact and contact ellipse are studied by applying the surface topology method. Three numerical examples are presented to demonstrate the influence of the assembly errors and design parameters of the RA worm gear drive on the KE, CR, ACR, ICT, and contact patterns.


2000 ◽  
Vol 122 (2) ◽  
pp. 201-206 ◽  
Author(s):  
I. H. Seol

The design and simulation of meshing of a single enveloping worm-gear drive with a localized bearing contact is considered. The bearing contact has a longitudinal direction and two branches of contact path. The purpose of localization is to reduce the sensitivity of the worm-gear drive to misalignment. The author’s approach for localization of bearing contact is based on the proper mismatch of the surfaces of the hob and drive worm. The developed computer program allows the investigation of the influence of misalignment on the shift of the bearing contact and the determination of the transmission errors and the contact ratio. The developed approach has been applied for K type of single-enveloping worm-gear drives and the developed theory is illustrated with a numerical example. [S1050-0472(00)00502-X]


1999 ◽  
Vol 121 (4) ◽  
pp. 573-578 ◽  
Author(s):  
M. De Donno ◽  
F. L. Litvin

The authors propose a new approach for design and generation of low-noise, stable bearing contact gear drive with cylindrical worm. The approach is based on application of an oversized hob and varied plunging of worm generating tool. It is discovered that without plunging positive transmission errors occur (that are unacceptable for favorable conditions of force transmission). A predesigned parabolic function is provided that is able to absorb transmission errors caused by misalignment and reduce the level of vibrations, especially in the case of application of multi-thread worms. The developed approach is tested by computerized simulation of meshing and contact by the developed computer program. The investigation is accomplished for a worm-gear drive with the Klingelnberg type of the worm that is ground by a circular cone, but the proposed approach may be applied for other types of worm gear drives with cylindrical worms.


Author(s):  
Faydor L. Litvin ◽  
I. H. Seol ◽  
K. Kim

Abstract The design and simulation of meshing of a single-enveloping worm-gear drive with a localized bearing contact is considered. The bearing contact has a longitudinal direction. The purpose of localization is to reduce the sensitivity of the worm-gear drive to misalignment. The authors’ approach for localization of bearing contact is based on the proper mismatch of the sufaces of the hob and the drive worm. The developed computer program allows the investigation of the influence of misalignment on the shift of the bearing contact and allows determination of the transmission errors. The developed approach is applicable for all types of single-enveloping worm-gear drives. The developed theory is illustrated with a numerical example.


1996 ◽  
Vol 118 (4) ◽  
pp. 551-555 ◽  
Author(s):  
I. H. Seol ◽  
F. L. Litvin

The worm and worm-gear tooth surfaces of existing worm-gear drive designs are in line contact at every instant and the gear drive is very sensitive to misalignment. Errors of alignment cause shifting of the bearing contact and transmission errors. Methods for computerized simulation of meshing and contact of misaligned worm-gear drives of existing design are proposed. Also, modification of worm-gear drive geometry that provides a localized and stable bearing contact with reduced sensitivity to misalignment is described. Methods for computerized simulation of meshing and contact of worm-gear drives with the existing and modified geometry are represented. Numerical examples that illustrate the developed theory are provided. The proposed approach has been applied for modification of involute, Klingelnberg and Flender type worm-gear drives.


Author(s):  
F Yang ◽  
D Su ◽  
C. R. Gentle

A new approach has been developed by the authors to estimate the load share of worm gear drives, and to calculate the instantaneous tooth meshing stiffness and loaded transmission errors. In the approach, the finite element (FE) modelling is based on the modified tooth geometry, which ensures that the worm gear teeth are in localized contact. The geometric modelling method for involute worm gears allows the tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of finite element analysis, the instantaneous meshing stiffness and loaded transmission errors are obtained and the load share is predicted. In comparison with existing methods, this approach applies loaded tooth contact analysis and provides more accurate load capacity rating of worm gear drives.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Jiabin Li ◽  
Lucheng Ji ◽  
Ling Zhou

Abstract The blended blade and endwall (BBEW) contouring technology can adjust the dihedral angle between suction surface and endwall, thus reducing corner separation in compressors. Generally, the design of BBEW relies on the experiences, the effective design results may not be the optimal result. In this paper, an optimization approach based on the genetic algorithm (GA) for feature selection and parameter optimization of support vector machine (SVM) is used to obtain the optimal BBEW parameters in a compressor cascade. Based on the sensitivity analysis of the results, it is found that the maximum blended width and the axial position of the maximum blended width are the two most important design parameters. The experimental results show that the optimal BBEW cascade can stretch the spanwise area of the high loss region, and reduce the maximum value in it. The numerical studies were conducted to analyze the flow mechanism. It is shown that the BBEW cascade has a transverse pressure difference at the axial position of the maximum blended width, and magnitude of the pressure difference in proportion to the maximum blended width. The transverse pressure difference removes the low-energy fluid from the corner to the main flow, thus improving the corner separation.


Author(s):  
W. Akl ◽  
M. Ruzzene ◽  
A. Baz

Abstract The optimal design parameters of fluid-loaded shells, provided with actively controlled stiffeners, are determined using a rational multi-criteria optimization approach. The adopted approach aims at simultaneously minimizing the shell vibration, associated sound radiation, weight of the stiffening rings, the control energy, and the cost of the shell/stiffeners assembly while maximizing the controllability and observability indices. A finite element model is presented to predict the vibration and noise radiation from cylindrical shells, with active stiffeners, into the surrounding fluid domain. The production cost as well as the life cycle and maintenance costs of the stiffened shells are computed using the Parametric Review of Information for Costing and Evaluation (PRICE) model. A Pareto/min-max multi-criteria optimization approach is then utilized to select the optimal locations and dimensions of the active stiffeners. Numerical examples are presented to compare the vibration and noise radiation characteristics of me optimally designed/controlled stiffened shells with the corresponding characteristics of plain un-stiffened and uncontrolled shells. The obtained results emphasize me importance of the adopted multi-criteria optimization approach in the design of quiet, low weight and low cost underwater shells which are suitable for various critical applications.


Sign in / Sign up

Export Citation Format

Share Document