scholarly journals PERANCANGAN ZETA CONVERTER PADA PELACAKAN TITIK DAYA MAKSIMUM PHOTOVOLTAIC MENGGUNAKAN ALGORITMA MODIFIKASI HILL CLIMBING

Foristek ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irwan Mahmudi ◽  
Jumiyatun Jumiyatun ◽  
Baso Mukhlis ◽  
Lukman Lukman

Electrical energy is a primary need at this time, which almost all human activities require electricity. The electrical energy we use today is a conversion from other energy, partly derived from fossil energy, which is energy that cannot be renewed and will run out if it is continuously explored and exploited. Solar energy is a renewable energy source that has the potential to be converted to electrical energy using solar panels or so-called photovoltaics. Photovoltaic has a drawback in its use, namely the output value is very dependent on environmental conditions. To maximize the power efficiency between the photovoltaic output and the power to be used by the load, a method is needed, namely Maximum Power Point Tracking (MPPT). In the application of this MPPT DC-DC Zeta converter is used with a hill climbing algorithm to achieve the value of the output voltage and current at maximum power. With this method, it is expected that MPPT control is reliable and easy to apply. In this study, the type of photovoltaic module used is the 60 Wp monocrystalline type with sampling data once an hour from 09.00 - 17.00 WITA, the tracking speed data obtained by the modified hill climbing algorithm is 0.142 seconds on average with an average efficiency of 99.969 %.

Author(s):  
Lahcen El Mentaly ◽  
Abdellah Amghar ◽  
Hassan Sahsah

Background: The solar field on our planet is inexhaustible, which favors the use of photovoltaic electricity which generates no nuisance: no greenhouse gases, no waste. Methods: It is a high value-added energy that is produced directly at the place of consumption through photovoltaic (PV) solar panels. Notwithstanding these advantages, the maximum power depends strongly on solar irradiation and temperature, which means that a Maximum Power Point Tracking (MPPT) controller must be inserted between the PV panel and the load in order to follow the Maximum Power Point (MPP) continuously and in real time. In this work, MPP’s behavior was simulated at different temperatures and solar irradiations using seven techniques which identify the MPP by different methods. Results: The novelty of this work is that the seven MPPT methods were compared according to a very selective criterion which is the MPPT efficiency as well as a purely digital duty cycle control without using the PI controller. The simulation under the PSIM software shows that the FLC, TP, FSCC, TG, HC and IC methods have almost the same efficiency of 99%, whereas the FOCV method had a low efficiency of 96%. Conclusion: This makes it possible to conclude that the best methods are FLC, HC and IC because they use fewer sensors compared to the rest.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1464
Author(s):  
Marcin Walczak ◽  
Leszek Bychto

DC/DC converters are widely used in photovoltaic (PV) systems to maximize the power drained from solar panels. As the power generated by a PV panel depends on the temperature and irradiance level, a converter needs to constantly modify its input resistance to remain at the maximum power point (MPP). The input resistance of a converter can be described by a simple equation that includes the converter load resistance and the duty cycle of the switching signal. The equation is sufficient for an ideal converter but can lead to incorrect results for a real converter, which naturally features some parasitic resistances. The goal of this study is to evaluate how the parasitic resistances of a converter influence its input resistance and if they are relevant in terms of MPPT system operation.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2312
Author(s):  
Jeongjin Yeo ◽  
Taeyoung Kim ◽  
Jae Jang ◽  
Yoonseok Yang

Power management systems (PMSs) are essential for the practical use of microbial fuel cell (MFC) technology, as they replace the unstable stacking of MFCs with step-up voltage conversion. Maximum-power extraction technology could improve the power output of MFCs; however, owing to the power consumption of the PMS operation, the maximum-power extraction point cannot deliver maximum power to the application load. This study proposes a practical power extraction for single MFCs, which reserves more electrical energy for an application load than conventional maximum power-point tracking (MPPT). When experimentally validated on a real MFC, the proposed method delivered higher output power during a longer PMS operation time than MPPT. The maximum power delivery enables more effective power conditioning of various micro-energy harvesting systems.


2021 ◽  
Author(s):  
MIRéLI BINDER VENDRUSCOLO ◽  
ANTóNIO MANUEL SANTOS SPENCER ANDRADE

As características elétricas de rendimento e potência de um painel fotovoltaico (PV) são influenciadas por dois fatores climáticos, que são: irradiância solar e temperatura. Por essa razão, os algoritmos de MPPT (Maximum Power Point Tracking) são essenciais para se obter a máxima potência produzida. Portanto, este trabalho apresenta uma avaliação comparativa das principais técnicas clássicas de MPPT, sendo elas: Perturba e Observa (P&O), Hill Climbing (HC) e Condutância Incremental (InC). Para fazer essas avaliações de MPPT foram utilizados conversores estáticos CC-CC, tais como: Boost, Buck e Buck-Boost. No entanto, o MPPT é aplicado na entrada e saída dos conversores, a fim de observar o melhor desempenho. Os resultados de simulação são avaliados utilizado o software PSIM.


Author(s):  
Mohammed Salah Bouakkaz ◽  
◽  
Ahcene Boukadoum ◽  
Omar Boudebbouz ◽  
Issam Attoui ◽  
...  

In this work, a survey is carried out on six MPPT algorithms which include conventional and artificial intelligence based approaches. Maximum Power Point Tracking (MPPT) algorithms are used in PV systems to extract the maximum power in varying climatic conditions. The following most popular MPPT techniques are being reviewed and studied: Hill Climbing (HC), Perturb and Observe (P&O), Incremental Conductance (INC), Open-Circuit Voltage (OCV), Short Circuit Current (SCC), and Fuzzy Logic Control (FLC). The algorithms are evaluated, analyzed, and interpreted using a Matlab-Simulink environment to show the performance and limitations of each algorithm


2018 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Dimas Juniyanto ◽  
Tatyantoro Andrasto ◽  
Suryono Suryono

The need for electrical energy continues to increase every time. Concerns about the depletion of fossil energy reserves encourage the acceleration of the development of renewable energy use. One of renewable energy is the solar energy. Due to the irreversible irradiation conditions, it takes controls to keep the solar panel's maximum power. The most widely in Maximum Power Point Tracking (MMPT) is Perturb Algorithm and Observe (P&O) but P&O Algorithm has deficiency of oscillations when steady state and MPP trace errors when irradiation changes rapidly. In this paper proposed P & O-Fuzzy algorithm is a modification of conventional P & O to improve the efficiency of solar panels. This research uses Matlab for simulation and hardware implementation using microcontroller Arduino Uno and buck converter topology. The result of simulation and hardware implementation, conventional P & O has an average efficiency of 85.03% while MPPT modification with P & O-Fuzzy algorithm can improve MPP tracking efficiency with 89.67%.


Sign in / Sign up

Export Citation Format

Share Document