scholarly journals Sorting and Function of the Human Folate Receptor Is Independent of the Caveolin Expression in Fisher Rat Thyroid Epithelial Cells

BMB Reports ◽  
2002 ◽  
Vol 35 (4) ◽  
pp. 395-402 ◽  
Author(s):  
Chong-Ho Kim ◽  
Young-Soon Park ◽  
Koong-Nah Chung ◽  
Patrick C. Elwood
1998 ◽  
Vol 157 (1) ◽  
pp. 5-12 ◽  
Author(s):  
JF Wang ◽  
V Milosveski ◽  
C Schramek ◽  
GH Fong ◽  
GP Becks ◽  
...  

Angiogenesis is an important component in the development of thyroid goitre. Vascular endothelial growth factor (VEGF) represents a family of specific endothelial cell mitogens involved in normal angiogenesis and in tumour development. The purpose of this study was to determine the distribution of VEGF in thyroid tissues during goitre formation, and to study the actions of VEGF on the regulation of thymidine incorporation and iodine uptake by thyroid follicular cells. Goitre was induced in adult rats by administration of methimazole together with a low iodine diet. Thyroid from normal or goitrous rats was removed, fixed and sectioned. Immunocytochemistry performed for VEGF using the avidin-biotin system showed that VEGF is present in normal thyroid and is located mainly in the vascular endothelium and interfollicular stromal tissue. After administration of goitrogen for 2 weeks, which caused a two- to threefold increase in thyroid weight, staining of VEGF was less apparent within the interfollicular stroma, but strongly increased throughout the thyroid follicular and endothelial cells. Uptake of [125I] and incorporation of [3H]thymidine by Fisher rat thyroid cells (FRTL-5) were measured after 72 h culture with or without TSH or VEGF, or both. In the absence of TSH, incubation with VEGF caused a significant reduction in [3H]thymidine incorporation, but did not significantly alter [125I] uptake. Incubation with TSH (1 mU/ml) caused a fourfold increase in [3H]thymidine incorporation that was diminished by co-incubation with 10 ng/ml or greater VEGF. Similarly, 10 ng/ml or greater VEGF significantly reduced the ability of TSH to increase [125I] uptake. The antagonistic effects of VEGF on TSH-stimulated [3H]thymidine incorporation or [125I] uptake were significantly reduced in the presence of an anti-VEGF antiserum. A DNA fragment representing mRNA encoding the VEGF receptor, flt-1, was identified in FRTL-5 cells by reverse transcription PCR analysis, and the abundance of this fragment was increased in FRTL-5 cells cultured in the medium containing TSH (1 mU/ml) or fibroblast growth factor (FGF)-2 (25 ng/ml). These results indicated that VEGF and one of its receptors, Flt-1, are present in epithelial cells of the thyroid, and that VEGF could contribute to the regulation of development and function of thyroid epithelial cells.


2018 ◽  
Vol 92 (6) ◽  
pp. e02169-17
Author(s):  
Alfredo Fusco ◽  
Giuseppe Portella ◽  
Pier Paolo Di Fiore ◽  
Maria Teresa Berlingieri ◽  
Roberto Di Lauro ◽  
...  

2018 ◽  
Vol 39 (10) ◽  
pp. 2061-2073 ◽  
Author(s):  
Alicia Requena Jimenez ◽  
Naila Naz ◽  
Jaleel A Miyan

Hydrocephalus (HC) is an imbalance in cerebrospinal fluid (CSF) secretion/absorption resulting in fluid accumulation within the brain with consequential pathophysiology. Our research has identified a unique cerebral folate system in which depletion of CSF 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is associated with cortical progenitor cell-cycle arrest in hydrocephalic Texas (H-Tx) rats. We used tissue culture, immunohistochemistry, in-situ PCR and RT-PCR and found that the in-vitro proliferation of arachnoid cells is highly folate-dependent with exacerbated proliferation occurring in hydrocephalic CSF that has low FDH but high folate-receptor-alpha (FRα) and folate. Adding FDH to this CSF prevented aberrant proliferation indicating a regulatory function of FDH on CSF folate concentration. Arachnoid cells have no detectable mRNA for FRα or FDH, but FDH mRNA is found in the choroid plexus (CP) and CSF microvesicles. Co-localization of FDH, FRα and folate suggests important functions of FDH in cerebral folate transport, buffering and function. In conclusion, abnormal CSF levels of FDH, FRα and folate inhibit cortical cell proliferation but allow uncontrolled arachnoid cell division that should increase fluid absorption by increasing the arachnoid although this fails in the hydrocephalic brain. FDH appears to buffer available folate to control arachnoid proliferation and function.


mBio ◽  
2021 ◽  
Author(s):  
Courtney M. Klappenbach ◽  
Nicholas M. Negretti ◽  
Jesse Aaron ◽  
Teng-Leong Chew ◽  
Michael E. Konkel

Campylobacter jejuni is a major foodborne pathogen that causes severe gastritis. We investigated the dynamics of focal adhesion structure and function in C. jejuni -infected epithelial cells.


2002 ◽  
Vol 14 (8) ◽  
pp. 665-672 ◽  
Author(s):  
Eugenio Jiménez ◽  
M.Idoia Gámez ◽  
M.Julia Bragado ◽  
Mercedes Montiel

2002 ◽  
Vol 22 (15) ◽  
pp. 5281-5295 ◽  
Author(s):  
Akihide Ryo ◽  
Yih-Cherng Liou ◽  
Gerburg Wulf ◽  
Masafumi Nakamura ◽  
Sam W. Lee ◽  
...  

ABSTRACT Oncogenes Neu/HER2/ErbB2 and Ras can induce mammary tumorigenesis via upregulation of cyclin D1. One major regulatory mechanism in these oncogenic signaling pathways is phosphorylation of serines or threonines preceding proline (pSer/Thr-Pro). Interestingly, the pSer/Thr-Pro motifs in proteins exist in two completely distinct cis and trans conformations, whose conversion is catalyzed specifically by the essential prolyl isomerase Pin1. By isomerizing pSer/Thr-Pro bonds, Pin1 can regulate the conformation and function of certain phosphorylated proteins. We have previously shown that Pin1 is overexpressed in breast tumors and positively regulates cyclin D1 by transcriptional activation and posttranslational stabilization. Moreover, in Pin1 knockout mice, mammary epithelial cells fail to undergo massive proliferation during pregnancy, as is the case in cyclin D1 null mice. These results indicate that Pin1 is upregulated in breast cancer and may be involved in mammary tumors. However, the mechanism of Pin1 overexpression in cancer and its significance in cell transformation remain largely unknown. Here we demonstrate that PIN1 expression is mediated by the transcription factor E2F and enhanced by c-Neu and Ha-Ras via E2F. Furthermore, overexpression of Pin1 not only confers transforming properties on mammary epithelial cells but also enhances the transformed phenotypes of Neu/Ras-transformed mammary epithelial cells. In contrast, inhibition of Pin1 suppresses Neu- and Ras-induced transformed phenotypes, which can be fully rescued by overexpression of a constitutively active cyclin D1 mutant that is refractory to the Pin1 inhibition. Thus, Pin1 is an E2F target gene that is essential for the Neu/Ras-induced transformation of mammary epithelial cells through activation of cyclin D1.


Sign in / Sign up

Export Citation Format

Share Document