amniotic epithelial cells
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 57)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 8 ◽  
Author(s):  
Ibrahim Fathi ◽  
Toshio Miki

Human amniotic epithelial cells (hAECs) derived from placental tissue have received significant attention as a promising tool in regenerative medicine. Several studies demonstrated their anti-inflammatory, anti-fibrotic, and tissue repair potentials. These effects were further shown to be retained in the conditioned medium of hAECs, suggesting their paracrine nature. The concept of utilizing the hAEC-secretome has thus evolved as a therapeutic cell-free option. In this article, we review the different components and constituents of hAEC-secretome and their influence as demonstrated through experimental studies in the current literature. Studies examining the effects of conditioned medium, exosomes, and micro-RNA (miRNA) derived from hAECs are included in this review. The challenges facing the application of this cell-free approach will also be discussed based on the current evidence.


Author(s):  
Miyako Tanaka ◽  
Kazuaki Tokodai ◽  
Masato Sato ◽  
Shuhei Yamada ◽  
Hitomi Okita ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Farhana Ferdousi ◽  
Kinji Furuya ◽  
Kazunori Sasaki ◽  
Yun-Wen Zheng ◽  
Tatsuya Oda ◽  
...  

In recent years, perinatal stem cells, such as human amniotic epithelial cells (hAECs), have attracted increasing interest as a novel tool of stem cell-based high-throughput drug screening. In the present study, we investigated the bioactivities of squalene (SQ) derived from ethanol extract (99.5%) of a microalgae Aurantiochytrium Sp. (EEA-SQ) in hAECs using whole-genome DNA microarray analysis. Tissue enrichment analysis showed that the brain was the most significantly enriched tissue by the differentially expressed genes (DEGs) between EEA-SQ-treated and control hAECs. Further gene set enrichment analysis and tissue-specific functional analysis revealed biological functions related to nervous system development, neurogenesis, and neurotransmitter modulation. Several adipose tissue-specific genes and functions were also enriched. Gene-disease association analysis showed nervous system-, metabolic-, and immune-related diseases were enriched. Altogether, our study suggests the potential health benefits of microalgae-derived SQ and we would further encourage investigation in EEA-SQ and its derivatives as potential therapeutics for nervous system- and metabolism-related diseases.


2021 ◽  
Vol 105 (12S1) ◽  
pp. S29-S29
Author(s):  
Fanny Lebreton ◽  
Kevin Bellofatto ◽  
Charles-Henri Wassmer ◽  
Lisa Perez ◽  
Rahul Khatri ◽  
...  

Placenta ◽  
2021 ◽  
Vol 114 ◽  
pp. 142
Author(s):  
Eriko Yasuda ◽  
Haruta Mogami ◽  
Yu Matsuzaka ◽  
Asako Inohaya ◽  
Masahito Takakura ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8345
Author(s):  
Helena Choltus ◽  
Régine Minet-Quinard ◽  
Corinne Belville ◽  
Julie Durif ◽  
Denis Gallot ◽  
...  

Maternal smoking is a risk factor of preterm prelabor rupture of the fetal membranes (pPROM), which is responsible for 30% of preterm births worldwide. Cigarettes induce oxidative stress and inflammation, mechanisms both implicated in fetal membranes (FM) weakening. We hypothesized that the receptor for advanced glycation end-products (RAGE) and its ligands can result in cigarette-dependent inflammation. FM explants and amniotic epithelial cells (AECs) were treated with cigarette smoke condensate (CSC), combined or not with RAGE antagonist peptide (RAP), an inhibitor of RAGE. Cell suffering was evaluated by measuring lactate dehydrogenase (LDH) medium-release. Extracellular HMGB1 (a RAGE ligand) release by amnion and choriodecidua explants were checked by western blot. NF-κB pathway induction was determined by a luciferase gene reporter assay, and inflammation was evaluated by cytokine RT-qPCR and protein quantification. Gelatinase activity was assessed using a specific assay. CSC induced cell suffering and HMGB1 secretion only in the amnion, which is directly associated with a RAGE-dependent response. CSC also affected AECs by inducing inflammation (cytokine release and NFκB activation) and gelatinase activity through RAGE engagement, which was linked to an increase in extracellular matrix degradation. This RAGE dependent CSC-induced inflammation associated with an increase of gelatinase activity could explain a pathological FM weakening directly linked to pPROM.


2021 ◽  
Author(s):  
Fanny Lebreton ◽  
Charles H. Wassmer ◽  
Kevin Bellofatto ◽  
Lisa Perez ◽  
Véronique Othenin-Girard ◽  
...  

Abstract Inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts. Human amniotic epithelial cells (hAECs) possess regenerative, immunomodulatory and anti-inflammatory properties. We hypothesized that hAECs could protect islets from cellular damage induced by pro-inflammatory cytokines. To verify our hypothesis hAECs monocultures, rat islets (RI), or RI-hAEC co-cultures where exposed to a pro-inflammatory cytokine cocktail (Interferon γ: IFN-γ, Tumor necrosis factor α: TNF-α and Interleukin-1β: IL-1β). The secretion of anti-inflammatory cytokines and gene expression changes in hAECs and viability and function of RI were evaluated. The expression of non-classical Major Histocompatibility Complex (MHC) class I molecules by hAECs cultured with various IFN-γ concentrations were assessed. Exposure to the pro-inflammatory cocktail significantly increased the secretion of the anti-inflammatory cytokines IL6, IL10 and G-CSF by hAECs, which was confirmed by upregulation of IL6, and IL10 gene expression. HLA-G, HLA-E and PDL-1 gene expression was also increased. This correlated with an upregulation of STAT1, STAT3 and NF-κB1gene expression levels. RI co-cultured with hAECs maintained normal function after cytokine exposure compared to RI cultured alone, and showed significantly lower apoptosis rate. Our results show that exposure to pro-inflammatory cytokines stimulates secretion of anti-inflammatory and immunomodulatory factors by hAECs through the JAK1/2 – STAT1/3 and the NF-κB1 pathways, which in turn protects islets against inflammation-induced damages. Integrating hAECs in islet transplants appears as a valuable strategy to achieve to inhibit inflammation mediated islet damage, prolong islet survival, improve their engraftment and achieve local immune protection allowing to reduce systemic immunosuppressive regimens.


PROTEOMICS ◽  
2021 ◽  
pp. 2000080
Author(s):  
Dandan Zhu ◽  
Haoyun Fang ◽  
Gina D. Kusuma ◽  
Renate Schwab ◽  
Mehri Barabadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document